Gongronella sp. w5 elevates Coprinopsis cinerea laccase production by carbon source syntrophism and secondary metabolite induction

2018 ◽  
Vol 103 (1) ◽  
pp. 411-425 ◽  
Author(s):  
Jun Hu ◽  
Yinliang Zhang ◽  
Yong Xu ◽  
Qiuying Sun ◽  
Juanjuan Liu ◽  
...  
2021 ◽  
Vol 7 (1) ◽  
pp. 75-82
Author(s):  
Siti Mutmainah ◽  
Evi Susanti

The production of ligninase by wood rot fungus (WRF) is determined by carbon source and growth condition. The goal of this study is to determine the ligninase profile produced by WRF KLUM2 in Kirk Medium using teak wood alkaline lignin as a carbon source known as Kirk Medium-Alkali lignin Kayu Jati (MK-ALKJ), optimization of dominant ligninase production in the MK-ALKJ compared to the one that is produced in the Kirk’s medium with glucose as a carbon source (MK-Glucose). This research was conducted in an experimental laboratory consisting of: (1) spore suspension preparation, (2) ligninase profiling at various growth times, (3) ligninase profiling at various temperature variations, (4) optimization of laccase production including pH and the amount of nitrogen source. Growth was identified based on the specific activity of lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase. The results showed that relatively the three types of ligninase, namely LiP, MnP, and laccase, were produced in the same amount by the wood rotting fungus isolates KLUM2 in MK-ALJK. All three were produced with the highest yield of respectively 55.65; 52.48; 57.64 U/mg. Laccase as the dominant ligninase can be optimized to reach 83.52 U/mg by inoculating 2.107 spore cells in MK-ALKJ in 37 °C, pH = 3.5, and a nitrogen source of 20mM (NH4)2SO4 for 6 days. Therefore, it can be concluded that the ligninase activity of indigenous WRF KLUM2 in MK-ALJK medium is higher than in the MK-Glucose.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
P. J. Strong

Various culture parameters were optimised for laccase synthesis by Trametes pubescens MB89, including pH, carbon source, nitrogen source, lignocellulosic supplements, and reported inducers. Glucose, in conjunction with a complex nitrogen source at pH 5.0, resulted in the highest laccase yield. Adding ethanol, copper, or 2,5-xylidine prior to inoculation further improved laccase concentrations. The addition of 2,5-xylidine was further investigated with multiple additions applied at varying times. This novel application substantially improved laccase production when applied regularly from inoculation and during the growth phase, and also countered glucose repression of laccase synthesis. Single and multiple factor changes were studied in three distillery wastewaters and a wine lees. A synergistic increase in laccase synthesis was observed with the addition of glucose, copper, and 2,5-xylidine. Single addition of 2,5-xylidine proved most beneficial with distillery wastewaters, while copper addition was most beneficial when using the wine lees as a culture medium.


2013 ◽  
Vol 12 (2) ◽  
pp. 120-128 ◽  
Author(s):  
Daniela Chmelová ◽  
Miroslav Ondrejovič

Abstract The aim of this study was to set parameters of repeated-batch cultivation of Ceriporiopsis subvermispora for laccase production and evaluate the efficiency of this type of cultivation for production of selected enzyme. The suitable conditions for repeated-batch cultivation were designed on the base of study of batch cultivation of white-rot fungus C. subvermispora. C. subvermispora was cultivated in media with different concentration of casein hydrolysate as nitrogen source and glucose as carbon source. A suitable concentration of casein hydrolysate to stimulate the laccase production was 1.5 and 2.5 g/L. Laccase production was started at certain critical concentration of glucose (5 g/L). In order to improve laccase production by repeated-batch cultivation of C. subvermispora, glucose was tested in concentration 10 g/L and casein hydrolysate in concentration 1.5 g/L. During a repeated-batch cultivation was measured increase laccase activities from 177.8 to 266 U/L. It was also observed, the cultivation time needed to reach maximum laccase production was shortened to 10 days.


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
SA Van der Sar ◽  
KM Fisch ◽  
C Gurgui ◽  
TA Nguyen ◽  
J Piel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document