scholarly journals Evaluation of potential tissue heating during percutaneous drill-assisted bone sampling in an in vivo porcine study

Author(s):  
Stefan M. Niehues ◽  
Sefer Elezkurtaj ◽  
Keno K. Bresssem ◽  
Bernd Hamm ◽  
Christoph Erxleben ◽  
...  

Abstract Background Minimally invasive, battery-powered drilling systems have become the preferred tool for obtaining representative samples from bone lesions. However, the heat generated during battery-powered bone drilling for bone biopsies has not yet been sufficiently investigated. Thermal necrosis can occur if the bone temperature exceeds a critical threshold for a certain period of time. Purpose To investigate heat production as a function of femur temperature during and after battery-powered percutaneous bone drilling in a porcine in vivo model. Methods We performed 16 femur drillings in 13 domestic pigs with an average age of 22 weeks and an average body temperature of 39.7 °C, using a battery-powered drilling system and an intraosseous temperature monitoring device. The standardized duration of the drilling procedure was 20 s. The bone core specimens obtained were embedded in 4% formalin, stained with haematoxylin and eosin (H&E) and sent for pathological analysis of tissue quality and signs of thermal damage. Results No significant changes in the pigs’ local temperature were observed after bone drilling with a battery-powered drill device. Across all measurements, the median change in temperature between the initial measurement and the temperature measured after drilling (at 20 s) was 0.1 °C. Histological examination of the bone core specimens revealed no signs of mechanical or thermal damage. Conclusion Overall, this preliminary study shows that battery-powered, drill-assisted harvesting of bone core specimens does not appear to cause mechanical or thermal damage.

2019 ◽  
Vol 139 (11) ◽  
pp. 1599-1605 ◽  
Author(s):  
Haruhisa Kanaya ◽  
Makoto Enokida ◽  
Kazutake Uehara ◽  
Masaru Ueki ◽  
Hideki Nagashima

Author(s):  
Yue Zhang ◽  
Linlin Xu ◽  
Chengyong Wang ◽  
Zhihua Chen ◽  
Shuai Han ◽  
...  

Recently, the failure rate of fracture fixation to fractured bone has increased. Mechanical and thermal damage to the bone, which influences the contact area and cell growth between the bone and the screw, is the primary reason for fixation failure. However, research has mainly focused on force and temperature in bone drilling. In this study, the characteristics of hole edges, microcracks, empty lacunae, and osteon necrosis were investigated as viewed in the transverse and longitudinal sections after drilling. Drilling force and temperature were also recorded for comparing the relationship with mechanical and thermal damage. Experiments were conducted in vivo using five different drill geometries under the same drilling parameters. Characteristics of the hole wall were detected using computed tomography. Microcracks and necrosis were analyzed using the pathological sectioning method. The maximum microcrack was approximately 3000 and 1400 μm in the transverse section and longitudinal section, respectively, which were much larger than those observed in previous studies. Empty lacuna and osteon necrosis, starting from the Haversian canal, were also found. The drill bit geometry, chisel edge, flute number, edges, and steps had a strong effect on bone damage, particularly the chisel edge. The standard and classic surgical drill caused the greatest surface damage and necrosis of the five drill bit geometries studied. The microstructural features including osteons and matrix played an important role in numbers and length of microcracks and necrosis. More microcracks were generated in the transverse direction, while a greater length of the empty lacuna was generated in the longitudinal direction under the same drilling parameters. Microcracks mainly propagated in a straight manner in and parallel to the interstitial bone matrix and cement line. Drilling forces were not directly correlated with bone damage; thus, hole performance should be considered to evaluate the superiority and inferiority of drill bits rather than the drill force alone.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Marion Strub ◽  
Xavier Van Bellinghen ◽  
Florence Fioretti ◽  
Fabien Bornert ◽  
Nadia Benkirane-Jessel ◽  
...  

Current approaches of regenerative therapies constitute strategies for bone tissue reparation and engineering, especially in the context of genetical diseases with skeletal defects. Bone regeneration using electrospun nanofibers’ implant has the following objectives: bone neoformation induction with rapid healing, reduced postoperative complications, and improvement of bone tissue quality.In vivoimplantation of polycaprolactone (PCL) biomembrane functionalized with BMP-2/Ibuprofen in mouse maxillary defects was followed by bone neoformation kinetics evaluation using microcomputed tomography. Wild-Type (WT) and Tabby (Ta) mice were used to compare effects on a normal phenotype and on a mutant model of ectodermal dysplasia (ED). After 21 days, no effect on bone neoformation was observed in Ta treated lesion (4% neoformation compared to 13% in the control lesion). Between the 21st and the 30th days, the use of biomembrane functionalized with BMP-2/Ibuprofen in maxillary bone lesions allowed a significant increase in bone neoformation peaks (resp., +8% in mutant Ta and +13% in WT). Histological analyses revealed a neoformed bone with regular trabecular structure, areas of mineralized bone inside the membrane, and an improved neovascularization in the treated lesion with bifunctionalized membrane. In conclusion, PCL functionalized biomembrane promoted bone neoformation, this effect being modulated by the Ta bone phenotype responsible for an alteration of bone response.


Author(s):  
U Lichtenauer ◽  
PL Schmid ◽  
A Oßwald ◽  
I Renner-Müller ◽  
M Reincke ◽  
...  
Keyword(s):  

1997 ◽  
Vol 78 (04) ◽  
pp. 1242-1248 ◽  
Author(s):  
David E Newby ◽  
Robert A Wright ◽  
Christopher A Ludlam ◽  
Keith A A Fox ◽  
Nicholas A Boon ◽  
...  

SummaryThe effects on blood flow and plasma fibrinolytic and coagulation parameters of intraarterial substance P, an endothelium dependent vasodilator, and sodium nitroprusside, a control endothelium independent vasodilator, were studied in the human forearm circulation. At subsystemic locally active doses, both substance P (2-8 pmol/min) and sodium nitroprusside (2-8 μg/min) caused dose-dependent vasodilatation (p <0.001 for both) without affecting plasma concentrations of PAI-1, von Willebrand factor antigen or factor VIII:C activity. Substance P caused local increases in t-PA antigen and activity (p <0.001) in the infused arm while sodium nitroprusside did not. At higher doses, substance P increased blood flow and t-PA concentrations in the noninfused arm. We conclude that brief, locally active and subsystemic infusions of intraarterial substance P cause a rapid and substantial local release of t-PA which appear to act via a flow and nitric oxide independent mechanism. This model should provide a useful and selective method of assessing the in vivo capacity of the forearm endothelium to release t-PA acutely.


2006 ◽  
Vol 66 (S 01) ◽  
Author(s):  
N Ochsenbein-Kölble ◽  
J Jani ◽  
G Verbist ◽  
L Lewi ◽  
K Marquardt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document