scholarly journals The clinical implication of soluble PD-L1 (sPD-L1) in patients with breast cancer and its biological function in regulating the function of T lymphocyte

Author(s):  
Baojuan Han ◽  
Lina Dong ◽  
Jing Zhou ◽  
Yan Yang ◽  
Jiaxun Guo ◽  
...  

AbstractThis work investigated the clinical prognostic implications and biological function of plasma soluble programmed cell death ligand 1 in breast cancer patients. Plasma sPD-L1 levels of recurrent/metastatic breast cancer patients were determined, and the association of sPD-L1 levels and metastatic progression-free survival and metastatic overall survival was assessed. The PD-L1 expression on breast cancer cells was analyzed by flow cytometry, and the level of sPD-L1 in the supernatant of breast cancer cells was determined by enzyme-linked immunosorbent assay. Furthermore, the effect of sPD-L1 on the proliferation and apoptosis of T lymphocytes was detected by WST-1 assay and flow cytometry. The plasma sPD-L1 levels in 208 patients with recurrent/metastatic breast cancer before receiving first-line rescue therapy were measured. The optimal cutoff value of plasma sPD-L1 for predicting disease progression was 8.774 ng/ml. Univariate and multivariate analyses identified high sPD-L1 level (≥ 8.774 ng/ml) and visceral metastasis were independent factors associated with poor prognosis. Relevance analysis showed that the plasma sPD-L1 level was weaklyassociated with some systemic inflammation markers, including white cell count (WBC), absolute monocytecount, and absolute neutrophil count. Furthermore, we found sPD-L1 could be found in supernatant of culture with breast cancer cell line expressing PD-L1 on the cell surface and inhibit T lymphocyte function, playing a negative regulatory role in cellular immunity. sPD-L1 was a good tumor predictive maker in breast cancer and it may play a potentially important role in immune tolerance.

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 858
Author(s):  
Jagyeong Oh ◽  
Davide Pradella ◽  
Changwei Shao ◽  
Hairi Li ◽  
Namjeong Choi ◽  
...  

Aberrant alternative splicing (AS) is a hallmark of cancer and a potential target for novel anti-cancer therapeutics. Breast cancer-associated AS events are known to be linked to disease progression, metastasis, and survival of breast cancer patients. To identify altered AS programs occurring in metastatic breast cancer, we perform a global analysis of AS events by using RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing (RASL-seq). We demonstrate that, relative to low-metastatic, high-metastatic breast cancer cells show different AS choices in genes related to cancer progression. Supporting a global reshape of cancer-related splicing profiles in metastatic breast cancer we found an enrichment of RNA-binding motifs recognized by several splicing regulators, which have aberrant expression levels or activity during breast cancer progression, including SRSF1. Among SRSF1-regulated targets we found DCUN1D5, a gene for which skipping of exon 4 in its pre-mRNA introduces a premature termination codon (PTC), thus generating an unstable transcript degraded by nonsense-mediated mRNA decay (NMD). Significantly, distinct breast cancer subtypes show different DCUN1D5 isoform ratios with metastatic breast cancer expressing the highest level of the NMD-insensitive DCUN1D5 mRNA, thus showing high DCUN1D5 expression levels, which are ultimately associated with poor overall and relapse-free survival in breast cancer patients. Collectively, our results reveal global AS features of metastatic breast tumors, which open new possibilities for the treatment of these aggressive tumor types.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e21029-e21029
Author(s):  
Christopher Neal ◽  
Sujita Sukumaran ◽  
Vishal Gupta ◽  
Insiya Jafferji ◽  
Dave Hasegawa ◽  
...  

e21029 Background: Up-regulation of epithelial mesenchymal transition (EMT) and the reduction of epithelial marker expression is associated with invasion, cancer progression, resistance to conventional therapies and poor prognosis. ApoStream, a novel continuous flow dielectrophoresis field-flow fractionation (DEP-FFF) device, was used to enable antibody-independent capture of circulating cancer cells (CCCs,also referred to as circulating tumor cells, CTC) for subsequent phenotyping of EMT markers. Methods: A side-by-side comparison of CellSearch and ApoStream was performed on 10 metastatic breast cancer patients. A multiplexed immunofluorescent assay and laser scanning cytometry analyses were used to unambiguously identify CK+/CD45–/DAPI+ CCCs and quantify their EpCAM and vimentin expression. Results: ApoStream recovered CK+/CD45–/DAPI+ CCCs from each breast cancer patient sample tested (mean=255 CCCs per 7.5 ml blood, see Table). ApoStream consistently recovered significantly higher number of CCCs compared to CellSearch (p=0.024). ApoStream recovered both EpCAM+ and EpCAM– CCCs in 50% and 90% of patients, respectively. Vimentin+ CCCs were isolated from 90% of patients. Conclusions: ApoStream’s higher capture efficiency demonstrated the majority of CCCs from breast cancer patients were EpCAM negative and vimentin-positive. ApoStream technology can be used to monitor CCCs undergoing EMT. [Table: see text]


Author(s):  
Laura Eichelberger ◽  
Massimo Saini ◽  
Helena Domínguez Moreno ◽  
Corinna Klein ◽  
Johanna M. Bartsch ◽  
...  

AbstractDespite important advances in the treatment of breast cancer, the 5-year survival rate for patients with distant metastasis remains less than 30%. Metastasis is a complex, multi-step process beginning with local invasion and ending with the outgrowth of systemically disseminated cells into actively proliferating metastases that ultimately cause the destruction of vital organs. It is this last step that limits patient survival and, at the same time, remains the least understood mechanistically. Here, we focus on understanding determinants of metastatic outgrowth using metastatic effusion biopsies from stage IV breast cancer patients. By modelling metastatic outgrowth through xenograft transplantation, we show that tumour initiation potential of patient-derived metastatic breast cancer cells across breast cancer subtypes is strongly linked to high levels of EPCAM expression. Breast cancer cells with high EPCAM levels are highly plastic and, upon induction of epithelial-mesenchymal transition (EMT), readily adopt mesenchymal traits while maintaining epithelial identity. In contrast, low EPCAM levels are caused by the irreversible reprogramming to a mesenchymal state with concomitant suppression of metastatic outgrowth. The ability of breast cancer cells to retain epithelial traits is tied to a global epigenetic program that limits the actions of EMT-transcription factor ZEB1, a suppressor of epithelial genes. Our results provide direct evidence that maintenance of epithelial identity is required for metastatic outgrowth while concomitant expression of mesenchymal markers enables plasticity. In contrast, loss of epithelial traits is characteristic of an irreversible mesenchymal reprogramming associated to a deficiency for metastatic outgrowth. Collectively, our data provide a framework for the intricate intercalation of mesenchymal and epithelial traits in metastatic growth.


2013 ◽  
Vol 31 (26_suppl) ◽  
pp. 31-31 ◽  
Author(s):  
Italia Grenga ◽  
Renee Nicole Donahue ◽  
Peter Sungwhan Kim ◽  
Brendan Dempsey ◽  
James L. Gulley ◽  
...  

31 Background: Therapeutic vaccine is emerging as a potentially efficacious and safe treatment for cancer patients. However, markers are not available to identify patients more likely to benefit from this treatment. Aim of this retrospective study was to analyze before treatment immune subsets that correlated with clinical outcome in metastatic breast cancer patients treated with docetaxel alone or in combination with vaccine. Methods: We applied multi-color flow cytometry analysis of PBMCs harvested prior to treatment from patients (n=43) enrolled in a small randomized phase II study of docetaxel alone (n=20) or in combination with PANVAC-V (Vaccinia) and PANVAC-F (Fowlpox) encoding for the tumor-associated antigens CEA and MUC-1, along with a TRIad of COstimulatory Molecules (B7-1, ICAM-1, and LFA-3; called TRICOM) (n=23). Frequency of more than 200 immune sub-populations before treatment was measured by flow cytometry. Each of the resulting subsets was ranked in tertiles. For immune subsets that correlated directly with PFS, 2 points were assigned if the frequency fell in the highest tertile, 1 point if in the middle, and 0 if in the lowest tertile. For subsets that correlated inversely with PFS, the points were assigned in the opposite order. An immunoscore was calculated based on the sum of points assigned to each subset. Log-Rank analysis, with the cutoff based on the median of the immunoscores, was performed to evaluate differences in PFS between patients with a low and high immunoscore. Results: In vaccine plus docetaxel arm, 10 immune subsets from PBMCs before treatment correlated with PFS and were used for the calculation of the immunoscore. Patients with an immunoscore above the median showed a statistically significant longer PFS compared to those with lower score in vaccine plus docetaxel arm (p<0.001, HR=0.1466, 95% CI= 0.0478-0.4375) but not in docetaxel alone arm (p=0.097, HR=0.418, 95% CI=0.147-1.172). Conclusions: Calculation of an immunoscore from PBMCs before treatment based on flow cytometry screening of immune subsets may identify patients that will most likely benefit from vaccine combination immunotherapy.


2015 ◽  
Vol 22 (3) ◽  
pp. 465-479 ◽  
Author(s):  
Felicity E B May ◽  
Bruce R Westley

The stratification of breast cancer patients for endocrine therapies by oestrogen or progesterone receptor expression is effective but imperfect. The present study aims were to validate microarray studies that demonstrate TFF3 regulation by oestrogen and its association with oestrogen receptors in breast cancer, to evaluate TFF3 as a biomarker of endocrine response, and to investigate TFF3 function. Microarray data were validated by quantitative RT-PCR and northern and western transfer analyses. TFF3 was induced by oestrogen, and its induction was inhibited by antioestrogens, tamoxifen, 4-hydroxytamoxifen and fulvestrant in oestrogen-responsive breast cancer cells. The expression of TFF3 mRNA was associated with oestrogen receptor mRNA in breast tumours (Pearson's coefficient=0.762,P=0.000). Monoclonal antibodies raised against the TFF3 protein detected TFF3 by immunohistochemistry in oesophageal submucosal glands, intestinal goblet and neuroendocrine cells, Barrett's metaplasia and intestinal metaplasia. TFF3 protein expression was associated with oestrogen receptor, progesterone receptor and TFF1 expression in malignant breast cells. TFF3 is a specific and sensitive predictive biomarker of response to endocrine therapy, degree of response and duration of response in unstratified metastatic breast cancer patients (P=0.000,P=0.002 andP=0.002 respectively). Multivariate binary logistic regression analysis demonstrated that TFF3 is an independent biomarker of endocrine response and degree of response, and this was confirmed in a validation cohort. TFF3 stimulated migration and invasion of breast cancer cells. In conclusion, TFF3 expression is associated with response to endocrine therapy, and outperforms oestrogen receptor, progesterone receptor and TFF1 as an independent biomarker, possibly because it mediates the malign effects of oestrogen on invasion and metastasis.


Sign in / Sign up

Export Citation Format

Share Document