Inbreeding and caste-specific variation in immune defence in the ant Formica exsecta

2010 ◽  
Vol 65 (5) ◽  
pp. 899-907 ◽  
Author(s):  
Emma Vitikainen ◽  
Liselotte Sundström
2020 ◽  
Author(s):  
Sarah Abou Alaiwi ◽  
Amin Nassar ◽  
Elio Adib ◽  
Stefan Groha ◽  
Elie W. Akl ◽  
...  

2011 ◽  
Vol 70 (2-3) ◽  
pp. 233-243 ◽  
Author(s):  
Cristina Cruz ◽  
María Dolores Domínguez-Valdivia ◽  
Pedro María Aparicio-Tejo ◽  
Carmen Lamsfus ◽  
Ana Bio ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Otto Seppälä ◽  
Jean-Claude Walser ◽  
Teo Cereghetti ◽  
Katri Seppälä ◽  
Tiina Salo ◽  
...  

Abstract Background Host immune function can contribute to numerous ecological/evolutionary processes. Ecoimmunological studies, however, typically use one/few phenotypic immune assays and thus do not consider the complexity of the immune system. Therefore, “omics” resources that allow quantifying immune activity across multiple pathways are needed for ecoimmunological models. We applied short-read based RNAseq (Illumina NextSeq 500, PE-81) to characterise transcriptome profiles of Lymnaea stagnalis (Gastropoda), a multipurpose model snail species. We used a genetically diverse snail stock and exposed individuals to immune elicitors (injury, bacterial/trematode pathogens) and changes in environmental conditions that can alter immune activity (temperature, food availability). Results Immune defence factors identified in the de novo assembly covered elements broadly described in other gastropods. For instance, pathogen-recognition receptors (PRR) and lectins activate Toll-like receptor (TLR) pathway and cytokines that regulate cellular and humoral defences. Surprisingly, only modest diversity of antimicrobial peptides and fibrinogen related proteins were detected when compared with other taxa. Additionally, multiple defence factors that may contribute to the phenotypic immune assays used to quantify antibacterial activity and phenoloxidase (PO)/melanisation-type reaction in this species were found. Experimental treatments revealed factors from non-self recognition (lectins) and signalling (TLR pathway, cytokines) to effectors (e.g., antibacterial proteins, PO enzymes) whose transcription depended on immune stimuli and environmental conditions, as well as components of snail physiology/metabolism that may drive these effects. Interestingly, the transcription of many factors (e.g., PRR, lectins, cytokines, PO enzymes, antibacterial proteins) showed high among-individual variation. Conclusions Our results indicate several uniform aspects of gastropod immunity, but also apparent differences between L. stagnalis and some previously examined taxa. Interestingly, in addition to immune defence factors that responded to immune elicitors and changes in environmental conditions, many factors showed high among-individual variation across experimental snails. We propose that such factors are highly important to be included in future ecoimmunological studies because they may be the key determinants of differences in parasite resistance among individuals both within and between natural snail populations.


2021 ◽  
Vol 168 (6) ◽  
Author(s):  
Mario Espinoza ◽  
Elodie J. I. Lédée ◽  
Amy F. Smoothey ◽  
Michelle R. Heupel ◽  
Victor M. Peddemors ◽  
...  

1995 ◽  
Vol 269 (5) ◽  
pp. G628-G646 ◽  
Author(s):  
S. A. Wank

The cholecystokinin (CCK) and gastrin families of peptides act as hormones and neuropeptides on central and peripheral CCK receptors to mediate secretion and motility in the gastrointestinal (GI) tract in the physiological response to a normal meal. CCK and its receptors are also widely distributed in the central nervous system (CNS) and contribute to the regulation of satiety, anxiety, analgesia, and dopamine-mediated behavior. Although the wide distribution, myriad number of functions, and reported pharmacological heterogeneity of CCK receptors would suggest a large number of receptor subtypes, the application of modern molecular biological techniques has identified two CCK receptors, CCK-A receptor (CCK-AR) and CCK-B receptor (CCK-BR), that mediate the actions of CCK and gastrin; gastrin receptors have been found to be identical to CCK-BR. CCK-AR, found predominantly in the GI system and select areas of the CNS, have high affinity for CCK and the nonpeptide antagonist L-364,718, whereas CCK-BR, found predominantly in the CNS and select areas of the GI system, have high affinity for CCK and gastrin and the nonpeptide antagonist L-365,260. Both CCK-AR and CCK-BR are highly conserved between species, although there is some tissue-specific variation in expression. Recombinant receptor expression faithfully reproduces the native receptor pharmacology and signal transduction pathways, allowing direct comparisons of receptor function between species as well as serving as a convenient source of receptor. Our present knowledge of the chromosomal localization, receptor gene structure, and primary sequence will allow further studies in disease association, receptor regulation, and structure-function analysis.


2021 ◽  
Vol 20 (4) ◽  
pp. 597-598
Author(s):  
J. Tienaho ◽  
N. Silvan ◽  
R. Muilu-Mäkelä ◽  
P. Kilpeläinen ◽  
E. Poikulainen ◽  
...  

Genetics ◽  
1985 ◽  
Vol 109 (1) ◽  
pp. 157-175
Author(s):  
Ward B Watt ◽  
Patrick A Carter ◽  
Sally M Blower

ABSTRACT Male mating success as a function of genotype is an important fitness component. It can be studied in wild populations, in species for which a given group of progeny has exactly one father, by determining genotypes of wild-caught mothers and of sufficient numbers of their progeny. Here, we study male mating success as a function of allozyme genotype at two glycolytic loci in Colias butterflies, in which sperm precedence is complete, so that the most recent male to mate fathers all of a female's subsequent progeny.—For the phosphoglucose isomerase, PGI, polymorphism, we predict mating advantage and disadvantage of male genotypes based on evaluation of their biochemical functional differences in the context of thermal-physiological-ecological constraints on the insects' flight activity. As predicted, we find major, significant advantage in mating success for kinetically favored genotypes, compared to the genotype distribution of males active with the sampled females in the wild. These effects are repeatable among samples and on different semispecies' genetic backgrounds.—Initial study of the phosphoglucomutase, PGM, polymorphism in the same samples reveals heterozygote advantage in male-mating success, compared to males active with the females sampled. This contrasts with a lack of correspondence between PGI and PGM genotypes in other fitness index or component differences.—Epistatic interactions in mating success between the two loci are absent.—There is no evidence for segregation distortion associated with the alleles of either primary locus studied, nor is there significant assortative mating.—These results extend our understanding of the specific variation studied and suggest that even loci closely related in function may have distinctive experience of evolutionary forces. Implications of the specificity of the effects seen are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document