scholarly journals Correction to: Ultraviolet absorbance of Sphagnum magellanicum, S. fallax and S. fuscum extracts with seasonal and species‑specific variation

2021 ◽  
Vol 20 (4) ◽  
pp. 597-598
Author(s):  
J. Tienaho ◽  
N. Silvan ◽  
R. Muilu-Mäkelä ◽  
P. Kilpeläinen ◽  
E. Poikulainen ◽  
...  
2020 ◽  
Vol 10 (9) ◽  
pp. 3309-3319 ◽  
Author(s):  
Ajith V Pankajam ◽  
Suman Dash ◽  
Asma Saifudeen ◽  
Abhishek Dutta ◽  
Koodali T Nishant

Abstract A growing body of evidence suggests that mutation rates exhibit intra-species specific variation. We estimated genome-wide loss of heterozygosity (LOH), gross chromosomal changes, and single nucleotide mutation rates to determine intra-species specific differences in hybrid and homozygous strains of Saccharomyces cerevisiae. The mutation accumulation lines of the S. cerevisiae hybrid backgrounds - S288c/YJM789 (S/Y) and S288c/RM11-1a (S/R) were analyzed along with the homozygous diploids RM11, S288c, and YJM145. LOH was extensive in both S/Y and S/R hybrid backgrounds. The S/Y background also showed longer LOH tracts, gross chromosomal changes, and aneuploidy. Short copy number aberrations were observed in the S/R background. LOH data from the S/Y and S/R hybrids were used to construct a LOH map for S288c to identify hotspots. Further, we observe up to a sixfold difference in single nucleotide mutation rates among the S. cerevisiae S/Y and S/R genetic backgrounds. Our results demonstrate LOH is common during mitotic divisions in S. cerevisiae hybrids and also highlight genome-wide differences in LOH patterns and rates of single nucleotide mutations between commonly used S. cerevisiae hybrid genetic backgrounds.


2006 ◽  
Vol 140 (2) ◽  
pp. 355-363 ◽  
Author(s):  
Michael G. Ikonomou ◽  
Marc P. Fernandez ◽  
Zachary L. Hickman

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Manisha Priyam ◽  
Sanjay K. Gupta ◽  
Biplab Sarkar ◽  
T. R. Sharma ◽  
A. Pattanayak

AbstractThe high degree of conservation of toll-like receptors (TLRs), and yet their subtle variations for better adaptation of species in the host–pathogen arms race make them worthy candidates for understanding evolution. We have attempted to track the trend of TLR evolution in the most diverse vertebrate group—teleosts, where Clarias batrachus was given emphasis, considering its traits for terrestrial adaptation. Eleven C. batrachus TLRs (TLR1, 2, 3, 5, 7, 8 9, 13, 22, 25, 26) were identified in this study which clustered in proximity to its Siluriformes relative orthologues in the phylogenetic analysis of 228 TLRs from 25 teleosts. Ten TLRs (TLR1, 2, 3, 5, 7, 8 9, 13, 21, 22) with at least 15 member orthologues for each alignment were processed for selection pressure and coevolutionary analysis. TLR1, 7, 8 and 9 were found to be under positive selection in the alignment-wide test. TLR1 also showed maximum episodic diversification in its clades while the teleost group Eupercaria showed the maximum divergence in their TLR repertoire. Episodic diversification was evident in C. batrachus TLR1 and 7 alignments. These results present a strong evidence of a divergent TLR repertoire in teleosts which may be contributing towards species-specific variation in TLR functions.


2019 ◽  
Vol 77 (2) ◽  
pp. 701-710
Author(s):  
Nicolas Vanermen ◽  
Wouter Courtens ◽  
Robin Daelemans ◽  
Luc Lens ◽  
Wendt Müller ◽  
...  

Abstract Among seabirds, lesser black-backed gulls (Larus fuscus) are considered to be at high risk of colliding with offshore wind turbines. In this respect, we used GPS tracking data of lesser black-backed gulls caught and tagged in two colonies along the Belgian North Sea coast (Ostend and Zeebrugge) to study spatial patterns in the species’ presence and behaviour in and around the Thornton Bank offshore wind farm (OWF). We found a significant decrease in the number of GPS fixes of flying birds from up to a distance of at least 2000 m towards the middle of the wind farm. Non-flying birds showed a similar avoidance of the wind farm interior, yet presence strongly peaked right at the wind farm’s edge, demonstrated to represent gulls perching on the outer turbine jacket foundations. The findings of this study reveal a strong within-wind farm variability in bird density, a most crucial parameter in collision risk modelling. The method presented here is straightforward and similar studies conducted at other wind farm sites on a range of large gull species (Larus sp.) would allow to assess the potential and species-specific variation in meso-scale response patterns and to gain insight in the underlying ecological incentives, which in turn would provide widely applicable and much-needed input for (cumulative) collision impact assessments.


1998 ◽  
Vol 49 (5) ◽  
pp. 383 ◽  
Author(s):  
B. H. Innes ◽  
P. M. Grewe ◽  
R. D. Ward

A genetic test was developed for the identification of the six species of billfish found in Australian waters (black marlin, Indo–Pacific blue marlin, striped marlin, Indo–Pacific sailfish, shortbill spearfish and broadbill swordfish). The test was based on the PCR–RFLP analysis of a 1400 bp region of the mitochondrial DNA molecule, the d-loop, using four restriction enzymes (Hinf I, Rsa I and Sau3A I andTaq I). A total of 33 composite haplotypes were observed among 160 fish; all were species-specific. Three of the species—black marlin, striped marlin and broadbill swordfish—showed sufficient intra-specific variation to be useful in population structure analyses.


2015 ◽  
Vol 2 ◽  
Author(s):  
Marly C. Martínez-Soto ◽  
Gotzon Basterretxea ◽  
Esther Garcés ◽  
Sílvia Anglès ◽  
Antoni Jordi ◽  
...  

1994 ◽  
Vol 84 (3) ◽  
pp. 319-324 ◽  
Author(s):  
A.K. Githeko ◽  
M.W. Service ◽  
C.M. Mbogo ◽  
F.A. Atieli ◽  
F.O. Juma

AbstractCDC (Communicable Disease Center) light-traps were compared with human-bait collections as an alternative method for sampling malaria vectors in two villages of western Kenya. The numbers of Anopheles funestus Giles and Anopheles gambiae sensu lato Giles in CDC light-trap collections were significantly correlated to the numbers caught in human-bait collections, but in Anopheles arabiensis Patton the two collections were not significantly correlated. Most of the female vectors collected in the traps were unfed. Parity of A. arabiensis collected in CDC light-traps (44.3%) was significantly lower than the rate obtained from females caught on human-bait (54.5%). Although CDC light-traps provide a cheap and convenient method for collecting vectors, further studies should nevertheless be undertaken to determine the influence of species-specific variation in the sizes and age-structure of collections because such variations can affect the epidemiological interpretation of the data.


2005 ◽  
Vol 50 (3) ◽  
pp. 755-767 ◽  
Author(s):  
G. J. C. Underwood ◽  
R. G. Perkins ◽  
M. C. Consalvey ◽  
A. R. M. Hanlon ◽  
K. Oxborough ◽  
...  

2019 ◽  
Author(s):  
Genevieve Housman ◽  
Ellen E. Quillen ◽  
Anne C. Stone

AbstractObjectivesEpigenetic mechanisms influence the development and maintenance of complex phenotypes and may also contribute to the evolution of species-specific phenotypes. With respect to skeletal traits, little is known about the gene regulation underlying these hard tissues or how tissue-specific patterns are associated with bone morphology or vary among species. To begin exploring these topics, this study evaluates one epigenetic mechanism, DNA methylation, in skeletal tissues from five nonhuman primate species which display anatomical and locomotor differences representative of their phylogenetic groups.Materials and MethodsFirst, we test whether intra-specific variation in skeletal DNA methylation is associated with intra-specific variation in femur morphology. Second, we identify inter-specific differences in DNA methylation and assess whether these lineage-specific patterns may have contributed to species-specific morphologies. Specifically, we use the Illumina Infinium MethylationEPIC BeadChip to identify DNA methylation patterns in femur trabecular bone from baboons (n=28), macaques (n=10), vervets (n=10), chimpanzees (n=4), and marmosets (n=6).ResultsSignificant differentially methylated positions (DMPs) were associated with a subset of morphological variants, but these likely have small biological effects and may be confounded by other variables associated with morphological variation. Conversely, several species-specific DMPs were identified, and these are found in genes enriched for functions associated with complex skeletal traits.DiscussionOverall, these findings reveal that while intra-specific epigenetic variation is not readily associated with skeletal morphology differences, some inter-specific epigenetic differences in skeletal tissues exist and may contribute to evolutionarily distinct phenotypes. This work forms a foundation for future explorations of gene regulation and skeletal trait evolution in primates.


Sign in / Sign up

Export Citation Format

Share Document