Influence of Age and Body Mass Index on the Yield and Proliferation Capacity of Adipose-Derived Stem Cells

2011 ◽  
Vol 35 (6) ◽  
pp. 1097-1105 ◽  
Author(s):  
Ali Mojallal ◽  
Charlotte Lequeux ◽  
Christo Shipkov ◽  
Antoine Duclos ◽  
Fabienne Braye ◽  
...  
Author(s):  
A A Aisenstadt ◽  
N I Enukashvili ◽  
T L Zolina ◽  
L V Alexandrov ◽  
A B Smoljaninov

Mesenchymal stem cells (MSC) can be applied for treatment of different diseases. Human MSC have been isolated from bone marrow, adipose tissue, umbilical cord blood. umbilical cord MSCs (uC- MSC) are obtained during birth with non-invasive, non-traumatic methods and thus seem a good candidate for clinical practice instead of bone-marrow MSC (BM-MSC). It is yet unknown wheth- er the immunophenotype and proliferation capacity of uC-MSC are similar to adipose-derived stem cells (AdSCs) or BM-MSC. The goal of this research was to study the immunophenotype and prolifer- atiion capacity of uC-MSC, AdSCs and BM-MSC. The results indicated that MSC of different origin had similar morphological and immunophenotypic characteristics with minor differences. uC-MSC differed from other cultures by constant level of Cd105 expression, the presence of minor Cd10 - and Cd13 - populations and higher proliferative activity. BM-MSC were characterized by reduced expres- sion levels of Cd90, compared with the uC-MSCs and AdSCs. These data confirm the similarity of uC-MSC with BM-MSCs and AdSCs and the possibility of their use in clinical practice instead of hard-to-obtain BM-MSC.


2013 ◽  
Vol 14 (1) ◽  
pp. 34 ◽  
Author(s):  
Trivia P Frazier ◽  
Jeffrey M Gimble ◽  
Jessica W Devay ◽  
Hugh A Tucker ◽  
Ernest S Chiu ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tian-Yu Zhang ◽  
Poh-Ching Tan ◽  
Yun Xie ◽  
Xiao-Jie Zhang ◽  
Pei-Qi Zhang ◽  
...  

Abstract Background Adipose-derived stem cells (ADSCs) promote tissue regeneration and repair. Cryoprotective agents (CPAs) protect cells from cryodamage during cryopreservation. Safe and efficient cryopreservation of ADSCs is critical for cell-based therapy in clinical applications. However, most CPAs are used at toxic concentrations, limiting their clinical application. Objective The aim of this study is to develop a non-toxic xeno-free novel CPA aiming at achieving high-efficiency and low-risk ADSC cryopreservation. Methods We explored different concentrations of trehalose (0.3 M, 0.6 M, 1.0 M, and 1.25 M) and glycerol (10%, 20%, and 30% v/v) for optimization and evaluated and compared the outcomes of ADSCs cryopreservation between a combination of trehalose and glycerol and the commonly used CPA DMSO (10%) + FBS (90%). All samples were slowly frozen and stored in liquid nitrogen for 30 days. The effectiveness was evaluated by the viability, proliferation, migration, and multi-potential differentiation of the ADSCs after thawing. Results Compared with the groups treated with individual reagents, the 1.0 M trehalose (Tre) + 20% glycerol (Gly) group showed significantly higher efficiency in preserving ADSC activities after thawing, with better outcomes in both cell viability and proliferation capacity. Compared with the 10% DMSO + 90% FBS treatment, the ADSCs preserved in 1.0 M Tre + 20% Gly showed similar cell viability, surface markers, and multi-potential differentiation but a significantly higher migration capability. The results indicated that cell function preservation can be improved by 1.0 M Tre + 20% Gly. Conclusions The 1.0 M Tre + 20% Gly treatment preserved ADSCs with a higher migration capability than 10% DMSO + 90% FBS and with viability higher than that with trehalose or glycerol alone but similar to that with 10% DMSO + 90% FBS and fresh cells. Moreover, the new CPA achieves stemness and multi-potential differentiation similar to those in fresh cells. Our results demonstrate that 1.0 M Tre + 20% Gly can more efficiently cryopreserve ADSCs and is a non-toxic CPA that may be suitable for clinical applications.


2020 ◽  
Author(s):  
Tian-Yu Zhang ◽  
Poh-Ching Tan ◽  
Yun Xie ◽  
Xiao-Jie Zhang ◽  
Pei-Qi Zhang ◽  
...  

Abstract Background: Adipose-derived stem cells (ADSCs) promote tissue regeneration and repair. Cryoprotective agents (CPAs) protect cells from cryodamage during cryopreservation. Safe and efficient cryopreservation of ADSCs is critical for cell-based therapy in clinical applications. However, most CPAs are used at toxic concentrations, limiting their clinical application. Objective: The aim of this study is to develop a non-toxic xeno-free novel CPA aiming at achieving high-efficiency and low-risk ADSC cryopreservation.Methods: We explored different concentrations of trehalose (0.3 M, 0.6 M, 1.0 M, and 1.25 M) and glycerol (10%, 20%, and 30% v/v) for optimization and evaluated and compared the outcomes of ADSCs cryopreservation between a combination of trehalose and glycerol and the commonly used CPA DMSO (10%) + FBS (90%). All samples were slowly frozen and stored in liquid nitrogen for 30 days. The effectiveness was evaluated by the viability, proliferation, migration and multi-potential differentiation of the ADSCs after thawing. Results: Compared with the groups treated with individual reagents, the 1.0 M Tre + 20% Gly group showed significantly higher efficiency in preserving ADSC activities after thawing, with better outcomes in both cell viability and proliferation capacity. Compared with the 10% DMSO + 90% FBS treatment, the ADSCs preserved in 1.0 M Tre + 20% Gly showed similar cell viability, surface markers and multi-potential differentiation but a significantly higher migration capability. The results indicated that cell function preservation can be improved by 1.0 M Tre + 20% Gly. Conclusions: The 1.0 M Tre + 20% Gly treatment preserved ADSCs with a higher migration capability than 10% DMSO + 90% FBS and with viability higher than that with trehalose or glycerol alone but similar to that with 10% DMSO + 90% FBS and fresh cells. Moreover, the new CPA achieves stemness and multi-potential differentiation similar to those in fresh cells. Our results demonstrate that 1.0 M Tre + 20% Gly can more efficiently cryopreserve ADSCs and is a non-toxic CPA that may be suitable for clinical applications.


2020 ◽  
Vol 10 (4) ◽  
pp. 623-629
Author(s):  
Hossein Taghavi ◽  
Jafar Soleimani Rad ◽  
Ahmad Mehdipour ◽  
Ahad Ferdosi Khosroshahi ◽  
Raziyeh Kheirjou ◽  
...  

Purpose : Acellular scaffold extracted from extracellular matrix (ECM) have been used for constructive and regenerative medicine. Adipose derived stem cells (ADSCs) can enhance the vascularization capacity of scaffolds. High mobility group box 1 (HMGB1) and stromal derived factor1 (SDF1) are considered as two important factors in vascularization and immunologic system. In this study, the effect of mineral pitch on the proliferation of human ADSCs was evaluated. In addition to HMGB1 and SDF1, factors expression in acellular scaffold was also assessed. Methods: To determine acellular scaffold morphology and the degree of decellularization, hematoxylin & eosin (H&E), 6-diamidino-2-phenylindole (DAPI), and Masson’s trichrome staining were applied. The scaffolds were treated with mineral pitch. Also, ADSCs were seeded on the scaffolds, and adhesion of the cells to the scaffolds were assessed using field emission scanning electron microscopy (FE-SEM). In addition, the efficiency of mineral pitch to induce the proliferation of ADSCs on the scaffolds was evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. To measure HMGB1 and SDF1 mRNA expression, real-time polymerase chain reactions (RT-PCR) was used. Results: FE-SEM showed that decellularized matrix possesses similar matrix morphology with a randomly oriented fibrillar structure and interconnecting pores. No toxicity was observed in all treatments, and cell proliferation were supported in scaffolds. The important point is that, the proliferation capacity of ADSCs on Mineral pitch loaded scaffolds significantly increased after 48 h incubation time compared to the unloaded scaffold (P<0.001). Conclusion: The results of this study suggest that mineral pitch has potentials to accelerate proliferation of ADSCs on the acellular scaffolds.


2007 ◽  
Vol 177 (4S) ◽  
pp. 64-64
Author(s):  
Murugesan Manoharan ◽  
Martha A. Reyes ◽  
Alan M. Nieder ◽  
Bruce R. Kava ◽  
MarkS Soloway

Sign in / Sign up

Export Citation Format

Share Document