scholarly journals Body mass index affects proliferation and osteogenic differentiation of human subcutaneous adipose tissue-derived stem cells

2013 ◽  
Vol 14 (1) ◽  
pp. 34 ◽  
Author(s):  
Trivia P Frazier ◽  
Jeffrey M Gimble ◽  
Jessica W Devay ◽  
Hugh A Tucker ◽  
Ernest S Chiu ◽  
...  
2015 ◽  
Vol 127 (23-24) ◽  
pp. 935-941 ◽  
Author(s):  
Emine Uysal ◽  
Yahya Paksoy ◽  
Mustafa Koplay ◽  
Alaaddin Nayman ◽  
Serter Gumus

2019 ◽  
Author(s):  
Anil K Giri ◽  
Gauri Prasad ◽  
Khushdeep Bandesh ◽  
Vaisak Parekatt ◽  
Anubha Mahajan ◽  
...  

AbstractObesity, a risk factor for various human diseases originates through complex interactions between genes and prevailing environment that varies across populations. Indians exhibit a unique obesity phenotype likely attributed by specific gene pool and environmental factors. Here, we present genome-wide association study (GWAS) of 7,259 Indians to understand the genetic architecture of body mass index (BMI) in the population. Our study revealed novel association of variants in BAI3 (rs6913677) and SLC22A11 (rs2078267) at GWAS significance, and of ZNF45 (rs8100011) with near GWAS significance. As genetic loci may dictate the phenotype through modulation of epigenetic processes, we overlapped discovered genetic signatures with DNA methylation patterns of 236 Indian individuals, and analyzed expression of the candidate genes using publicly available data. The variants in BAI3 and SLC22A11 were found to dictate methylation patterns at unique CpGs harboring critical cis- regulatory elements. Further, BAI3, SLC22A11 and ZNF45 variants were found to overlie repressive chromatin, active enhancer, and active chromatin regions, in that order, in human subcutaneous adipose tissue in ENCODE database. Besides, the identified genomic regions represented potential binding sites for key transcription factors implicated in obesity and/or metabolic disorders. Interestingly, rs8100011 (ZNF45) acted as a robust cis-expression quantitative trait locus (cis-eQTL) in subcutaneous adipose tissue in GTEx portal, and ZNF45 gene expression showed an inverse correlation with BMI in skeletal muscle of Indian subjects. Further, gene-based GWAS analysis revealed CPS1 and UPP2 as additional leads regulating BMI in Indians. Our study decodes potential genomic mechanisms underlying obesity phenotype in Indians.


2019 ◽  
Vol 15 (4) ◽  
pp. 574-589 ◽  
Author(s):  
Marzia Carluccio ◽  
Mariachiara Zuccarini ◽  
Sihana Ziberi ◽  
Patricia Giuliani ◽  
Caterina Morabito ◽  
...  

2008 ◽  
Vol 20 (1) ◽  
pp. 223
Author(s):  
A. Lima ◽  
E. Monaco ◽  
S. Wilson ◽  
D. Kim ◽  
C. Feltrin ◽  
...  

The quantity and accessibility of subcutaneous adipose tissue in humans make it an attractive alternative to bone marrow as a source of adult stem cells for therapeutic purposes. However, before such a cell source substitution can be proposed, the properties of stem cells derived from adipose (ADSCs) and bone marrow (MSCs) and their differentiated progeny must be compared in an animal model that adequately simulates the structure and physiology of humans. The objective of this work was to induce adult porcine stem cells isolated from subcutaneous adipose tissue and bone marrow to differentiate in vitro along the osteoblastic lineage and to compare their morphological, phenotypic, and genotypic properties. MSCs and ADSCs were isolated respectively from femurs and subcutaneous adipose tissue of adult pigs and cultured in vitro using DMEM supplemented with 10% fetal bovine serum (FBS), 1% penicillin G-streptomycin, and 5.6 mg L–1 amphotericin B. After 3 passages, cells were differentiated along the osteogenic lineage using lineage-specific inducing medium. Osteogenic medium contained 100 nm dexamethasone, 10 mm β-glycerophosphate, and 0.005 mm ascorbic acid-2-phosphate. Osteogenic cultures were incubated for 4 weeks in 95% air and 5% CO2 at 39�C. Spent medium was replaced with fresh medium every 3 days. Histological staining with alkaline phosphatase, Von Kossa, and alizarin red S were performed at 0, 2, 4, 7, 14, 21, and 28 days of differentiation (dd). At the same time points, RNA was extracted. qPCR was performed on COL1A1, BGLAP, SPARC, and SPP1. As internal control, the geometrical mean of GTF2H, NUBP, and PPP2C was used. Relative mRNA abundance between cell types was calculated using 1/efficiencydCT. The osteogenic differentiation of both MSCs and ADScs was confirmed by the organization of the cells in nodules and by alkaline phosphatase-, Von Kossa-, and alizarin red S-positive staining. The percent relative abundance of the 4 genes in both cell types was COL1A1 (ca. 50) > SPARC (ca. 45) > SPP1 (ca. 5) > BGLAP ( < 0.1). Cell types showed similar mRNA abundance for COL1A1 and SPARC while SPP1 and BGLAP were, respectively, 10- and 19-fold higher in MSCs than in ADSCs. All of the genes had the same pattern among tissues during differentiation except for SPP1, which showed a >10-fold increase at 14 v. 0 dd only for MSCs. Adipose-derived stem cells demonstrated a clear osteogenic differentiation and similar expression and pattern of the two osteogenic genes most abundant in MSCs (COL1A1 and SPARC). However, the higher abundance of SPP1 and BGLAP and the different behavior of SPP1 in MSCs suggest a different transcription profile between the two cell types. From these preliminary results, adipose tissue can be a practical alternative source for stem cells in future human clinical applications.


Author(s):  
Eiji Munetsuna ◽  
Hiroya Yamada ◽  
Yoshitaka Ando ◽  
Mirai Yamazaki ◽  
Yoshiki Tsuboi ◽  
...  

Purpose It has been demonstrated that circulating microRNA profiles are affected by physiological conditions. Several studies have demonstrated that microRNAs play important roles in the regulation of adiposity. However, few have investigated the relationship between circulating microRNAs and obesity, which has become a major public health problem worldwide. This study investigated the association between circulating microRNAs and obesity in a Japanese population. Methods Obesity parameters, such as subcutaneous and visceral fat adipose tissue, body fat percentage, and body mass index were assessed in a cross-sectional sample of 526 participants who attended health examinations in Yakumo, Japan. In addition, five circulating microRNAs (miR-20a, -21, -27a, -103a, and -320), which are involved in adipocyte proliferation and differentiation, were quantified using real-time polymerase chain reaction amplification. Results We compared the circulating microRNA concentrations in a percentile greater than 75th (high) with below the value (low) of subcutaneous adipose tissue, visceral fat adipose tissue, body mass index, and per cent body fat. For visceral fat adipose tissue, significant decrease in miR-320 expression was observed in high group. Also, for body mass index, significant change of miR-20a, -27a, 103a, and 320 expression level was observed in high group. Multiple linear regression analysis demonstrated that circulating levels of some microRNA such as miR-27a were significantly associated with subcutaneous adipose tissue, visceral fat adipose tissue, and body mass index. Conclusions Our findings support the need for further studies to determine whether such changes are consistent across different populations and whether the identified microRNAs may represent novel biomarkers to predict the susceptibility and progression of obesity-related disorders.


Author(s):  
Marietta Sengeis ◽  
Wolfram Müller ◽  
Paul Störchle ◽  
Alfred Fürhapter-Rieger

AbstractBody fat values obtained with various measurement methods deviate substantially in many cases. The standardised brightness-mode ultrasound method was used in 32 Kenyan elite long-distance runners to measure subcutaneous adipose tissue thicknesses at an accuracy and reliability level not reached by any other method. Subcutaneous adipose tissue forms the dominating part of body fat. Additionally, body mass (m), height (h), sitting height (s), leg length, and the mass index MI1 =0.53m/(hs) were determined. MI1 considers leg length, which the body mass index ignores. MI1 values of all participants were higher than their body mass indices. Both indices for relative body weight were within narrow ranges, although thickness sums of subcutaneous adipose tissue deviated strongly (women: 20–82 mm; men: 3–36 mm). Men had 2.1 times more embedded fasciae in the subcutaneous adipose tissue. In the subgroup with personal best times below world record time plus 10%, no correlation between performance and body mass index was found, and there was also no correlation with sums of subcutaneous adipose tissue thicknesses. Within the data ranges found here, extremely low relative body weight or low body fat were no criteria for the level of performance, therefore, pressure towards too low values may be disadvantageous.


Sign in / Sign up

Export Citation Format

Share Document