Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat

2008 ◽  
Vol 27 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Xiying Zhang ◽  
Suying Chen ◽  
Hongyong Sun ◽  
Dong Pei ◽  
Yanmei Wang
2020 ◽  
Vol 242 ◽  
pp. 106410
Author(s):  
Yang Lu ◽  
Zongzheng Yan ◽  
Lu Li ◽  
Congshuai Gao ◽  
Liwei Shao

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1318 ◽  
Author(s):  
Zsuzsanna Farkas ◽  
Emese Varga-László ◽  
Angéla Anda ◽  
Ottó Veisz ◽  
Balázs Varga

The effects of simulated waterlogging, drought stress and their combination were examined in a model experiment in Martonvásár, Hungary, in 2018. Four modern winter wheat varieties (‘Mv Toborzó’ (TOB), ‘Mv Mambó’ (MAM), ‘Mv Karizma’ (KAR), ‘Mv Pálma’ (PAL)) and one old Hungarian winter wheat cultivar (‘Bánkúti 1201’ (BKT)) were tested. Apart from the control treatment (C), the plants were exposed to two different abiotic stresses. To simulate waterlogging (WL), plants were flooded at four leaf stage, while in the WL + D treatment, they were stressed both by waterlogging and by simulated drought stress at the early stage of plant development and at the heading stage, respectively. The waterlogging treatment resulted in a significant decrease in plant biomass (BKT, TOB), number of spikes (TOB), grain yield (BKT, TOB), water use (BTK) and water-use efficiency (TOB, MAM, PAL) compared to the controls. The combined treatment (WL + D) led to a significant decrease in plant height (BTK, MAM, KAR), number of spikes (BTK, TOB, MAM, KAR), thousand kernel weight (TOB), harvest index (BTK), biomass, grain yield, water-use efficiency (in all varieties) and water use (BKT, TOB, MAM, KAR) of the plants. The best water-use efficiency was observed for MAM; therefore, this genotype could be recommended for cultivation at stress prone areas. The varieties MAM, KAR and PAL also showed good adaptability.


2018 ◽  
Vol 221 ◽  
pp. 219-227 ◽  
Author(s):  
Xuexin Xu ◽  
Meng Zhang ◽  
Jinpeng Li ◽  
Zuqiang Liu ◽  
Zhigan Zhao ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhen Zhang ◽  
Yongli Zhang ◽  
Yu Shi ◽  
Zhenwen Yu

AbstractThis study aims to investigate optimization of the basal-top-dressing nitrogen ratio for improving winter wheat grain yield, nitrogen use efficiency, water use efficiency and physiological parameters under supplemental irrigation. A water-saving irrigation (SI) regime was established and sufficient irrigation (UI) was used as a control condition. The split-nitrogen regimes used were based on a identical total nitrogen application rate of 240 kg ha−1 but were split in four different proportions between sowing and the jointing stage; i.e. 10:0 (N1), 7:3 (N2), 5:5 (N3) and 3:7 (N4). Compared with the N1, N2 and N4 treatments, N3 treatment increased grain yield, nitrogen and water use efficiencies by 5.27–17.75%, 5.68–18.78% and 5.65–31.02%, respectively, in both years. The yield advantage obtained with the optimized split-nitrogen fertilizer application may be attributable to greater flag leaf photosynthetic capacity and grain-filling capacity. Furthermore, the N3 treatment maintained the highest nitrogen and water use efficiencies. Moreover, we observed that water use efficiency of SI compared with UI increased by 9.75% in 2016 and 10.79% in 2017, respectively. It can be concluded that SI along with a 5:5 basal-top-dressing nitrogen ratio should be considered as an optimal fertigation strategy for both high grain yield and efficiency in winter wheat.


1990 ◽  
Vol 41 (3) ◽  
pp. 431 ◽  
Author(s):  
KHM Siddique ◽  
D Tennant ◽  
MW Perry ◽  
RK Belford

Water use and water use efficiency of old and modern wheat cultivars and one barley cultivar were measured in a Mediterranean environment at Merredin, W.A. Water use efficiency for grain increased substantially from old to modern cultivars, with little difference among modern cultivars. Water use efficiency for dry matter was similar between cultivars. Barley had the highest water use efficiency of both grain and dry matter. Improved water use efficiency for grain in modern cultivars was associated with faster development, earlier flowering, improved canopy structure and higher harvest index. Modern cultivars used slightly less water than old cultivars. The pattern of water use was also different, with late-maturing old cultivars using more water in the pre- than the post-anthesis period. The ratio of pre- to post-anthesis water use was highest with the late-maturing, old cultivar Purple Straw (5.2:1) and lowest with early-maturing, modern cultivar Gutha (3.0:1). Soil evaporation estimates showed that modern cultivars had lower rates of soil evaporation in the early part of the growing season. This was associated with their faster leaf area development and improved light interception. About 40% of the total water use was lost by soil evaporation with very little difference between wheat cultivars. Barley had 15% less soil evaporation than wheat. Water use efficiency for grain based on transpiration (transpiration efficiency) for the four modern cultivars was 15.8 kg ha-1 mm-1, similar to other studies in comparable environments. Some further improvement in water use efficiency appears possible through improvement in crop biomass and harvest index. However, given the frequent and severe limitations of total water supply at low rainfall sites such as Merredin, there appears to be more scope for improvement in yield and water use efficiency in the medium and high rainfall areas of the wheatbelt.


Sign in / Sign up

Export Citation Format

Share Document