Fetal bovine serum, but not human serum, inhibits the in vitro cytotoxicity of ET-743 (Yondelis, trabectedin)

2003 ◽  
Vol 53 (1) ◽  
pp. 89-90 ◽  
Author(s):  
Gianluca Tognon ◽  
Roberta Frapolli ◽  
Marco Zaffaroni ◽  
Eugenio Erba ◽  
Massimo Zucchetti ◽  
...  
Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3667
Author(s):  
Yasuyuki Fujii ◽  
Yoshitomo Suhara ◽  
Yusuke Sukikara ◽  
Tomohiro Teshima ◽  
Yoshihisa Hirota ◽  
...  

Flavan-3-ols (FLs), specifically catechin and its oligomer B-type procyanidins, are suggested to potently bind to bovine serum albumin (BSA). We examined the interaction between BSA and FLs by fluorescence quenching and found the following order of binding activities to BSA: cinnamtannin A2 (A2; tetramer) > procyanidin C1 (C1; trimer) ≈ procyanidin B2 (B2, dimer) > (−)epicatechin (EC, monomer). Docking simulations between BSA and each compound at the binding site showed that the calculated binding energies were consistent with the results of our experimental assay. FLs exerted cytotoxicity at 1000 μg/mL in F11 cell culture with fetal bovine serum containing BSA. In culture containing serum-free medium, FLs exhibited significant cell proliferation at 10−4 μg/mL and cytotoxicity was observed at concentrations greater than 10 μg/mL. Results of this study suggest that interactions between polyphenols and BSA should be taken into account when evaluating procyanidin in an in vitro cell culture system.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Mimmi Patrikoski ◽  
Michelle Hui Ching Lee ◽  
Laura Mäkinen ◽  
Xiu Min Ang ◽  
Bettina Mannerström ◽  
...  

Microenvironment plays an important role for stem cell proliferation and differentiation. Macromolecular crowding (MMC) was recently shown to assist stem cells in forming their own matrix microenvironment in vitro. The ability of MMC to support adipose stem cell (ASC) proliferation, metabolism, and multilineage differentiation was studied under different conditions: fetal bovine serum- (FBS-) and human serum- (HS-) based media and xeno- and serum-free (XF/SF) media. Furthermore, the immunophenotype of ASCs under MMC was evaluated. The proliferative capacity of ASCs under MMC was attenuated in each condition. However, osteogenic differentiation was enhanced under MMC, shown by increased deposition of mineralized matrix in FBS and HS cultures. Likewise, significantly greater lipid droplet accumulation and increased collagen IV deposition indicated enhanced adipogenesis under MMC in FBS and HS cultures. In contrast, chondrogenic differentiation was attenuated in ASCs expanded under MMC. The ASC immunophenotype was maintained under MMC with significantly higher expression of CD54. However, MMC impaired metabolic activity and differentiation capacity of ASCs in XF/SF conditions. Both the supportive and inhibitory effects of MMC on ASC are culture condition dependent. In the presence of serum, MMC maintains ASC immunophenotype and enhances adipogenic and osteogenic differentiation at the cost of reduced proliferation.


1997 ◽  
Vol 1 (4) ◽  
pp. 196-202
Author(s):  
Gerald G. Krueger ◽  
Cynthia M. Jorgensen

Background: A framework hypothesis for the pathogenesis of psoriasis states that “there is an aberration throughout the skin of patients with psoriasis that is modified to disease expression by circulating factors.” Objective: A question to emerge from this hypothesis concerns whether fibroblasts could be more central to the aberration than other cells of the skin? This article focuses on the modulation of growth of fibroblasts from uninvolved and involved sites of patients with psoriasis as a function of the type of serum in which they are grown. Methods: Fibroblasts were generated from normal subjects and from involved and uninvolved sites of six untreated psoriatic subjects and their growth in vitro was assessed as a function of the type of serum (fetal bovine serum, normal human serum, and serum from psoriatic subjects) in which they are grown. Results: The data show (a) that fibroblasts from psoriatic subjects, especially from uninvolved sites, have an inherent capacity to proliferate at an enhanced rate relative to normal fibroblasts; (b) that this enhanced proliferation can be augmented by normal human serum and to a greater degree by serum from psoriatic subjects; (c) that ≈ 40% of the enhanced proliferation is secondary to the psoriasis serum phenotype; (d) that ≈ 30% of enhanced proliferation is secondary to the psoriasis fibroblast phenotype; and (e) that the magnitude of these features are independent of the severity of psoriasis, as assessed at the time of donation of biopsies for generation of test fibroblasts or of blood for serum. Conclusion: These data support the hypothesis that there is an aberration throughout the skin of patients with psoriasis (enhanced proliferation of fibroblasts in vitro, especially from uninvolved sites) that is modified by circulating factors (serum).


2006 ◽  
Vol 65 (2) ◽  
pp. 374-386 ◽  
Author(s):  
Misae Suzuki ◽  
Koji Misumi ◽  
Manabu Ozawa ◽  
Junko Noguchi ◽  
Hiroyuki Kaneko ◽  
...  

2011 ◽  
Vol 57 (4) ◽  
pp. 356-361
Author(s):  
Ikuo Nishigaki ◽  
Gowri Rangasamy Gunassekaran ◽  
Panjan Nagappan Venkatesan ◽  
Mandupal Chaco Sabu ◽  
Sabu Priya ◽  
...  

2018 ◽  
Vol 19 (11) ◽  
pp. 3538 ◽  
Author(s):  
Brandon Lehrich ◽  
Yaxuan Liang ◽  
Pooya Khosravi ◽  
Howard Federoff ◽  
Massimo Fiandaca

It is known that culture media (CM) promotes cellular growth, adhesion, and protects explanted primary brain cells from in vitro stresses. The fetal bovine serum (FBS) supplement used in most CM, however, contains significant quantities of extracellular vesicles (EVs) that confound quantitative and qualitative analyses from the EVs produced by the cultured cells. We quantitatively tested the ability of common FBS EV-depletion protocols to remove exogenous EVs from FBS-supplemented CM and evaluated the influence such methods have on primary astrocyte culture growth and viability. We assessed two methodologies utilized for FBS EV removal prior to adding to CM: (1) an 18-h ultracentrifugation (UC); and (2) a commercial EV-depleted FBS (Exo-FBS™). Our analysis demonstrated that Exo-FBS™ CM provided the largest depletion (75%) of total FBS EVs, while still providing 6.92 × 109 ± 1.39 × 108 EVs/mL. In addition, both UC and Exo-FBS™ CM resulted in poor primary astrocyte cell growth and viability in culture. The two common FBS EV-depletion methods investigated, therefore, not only contaminate in vitro primary cell-derived EV analyses, but also provide a suboptimal environment for primary astrocyte cell growth and viability. It appears likely that future CM optimization, using a serum-free alternative, might be required to advance analyses of cell-specific EVs isolated in vitro.


2021 ◽  
Author(s):  
Xenia Dolde ◽  
Christiaan Karreman ◽  
Marianne Wiechers ◽  
Stefan Schildknecht ◽  
Marcel Leist

Fetal bovine serum (FBS) is the only known stimulus for migration of human neural crest cells (NCCs). Non-animal chemoattractants are desirable for the optimization of chemotaxis assays to be incorporated in a test battery for reproductive and developmental toxicity. We confirmed here in an optimized transwell assay that FBS triggers directed migration along a concentration gradient. The responsible factor was found to be a protein in the 30-100 kDa size range. In a targeted approach, we tested a large panel of serum constituents known to be chemotactic for NCCs in animal models (e.g. VEGF, PDGF, FGF, SDF-1/CXCL12, ephrins, endothelin, Wnt, BMPs). None of the corresponding human proteins showed any effect in our chemotaxis assays based on human NCCs. We then examined in a broad screening approach, whether human cells would produce any factor able to trigger NCC migration. We found that HepG2 hepatoma cells produced chemotaxis-triggering activity (CTA). Using chromatographic methods and by employing the NCC chemotaxis test as bioassay, the responsible protein was enriched by up to 5000-fold. We also explored human serum and platelets as direct source, independent of any cell culture manipulations. A CTA was enriched from platelet lysates several thousand-fold. Its temperature and protease-sensitivity suggested a protein component. The capacity of this factor to trigger chemotaxis was confirmed by single-cell video-tracking analysis of migrating NCCs. The human CTA characterized here may be employed in the future for the setup of assays testing for the disturbance of directed NCC migration by toxicants.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1150-1157 ◽  
Author(s):  
AR Migliaccio ◽  
G Migliaccio ◽  
M Brice ◽  
P Constantoulakis ◽  
G Stamatoyannopoulos ◽  
...  

Abstract We have studied the effects of recombinant hematopoietic growth factors, granulocyte-macrophage colony-stimulating factor (GM-CSF) and/or interleukin-3 (IL-3) on the globin program of adult human erythroid progenitors (BFUe) stimulated to terminal differentiation by erythropoietin under fetal bovine serum (FBS)-supplemented or FBS- deprived culture conditions. Fetal globin production by BFUe-derived erythroblasts was assessed at the protein and mRNA level and its cellular distribution was evaluated by immunofluorescence. Although hemoglobinization and maturation of BFUe-derived erythroblasts was by and large comparable in FBS-replete versus FBS-deprived cultures, the latter had significantly less (up to 20-fold) gamma-globin and gamma- globin mRNA levels. Reduced gamma-globin in serum-deprived cultures was also reflected by a smaller proportion of erythroblasts with detectable gamma-globin by immunofluorescence. Erythroid bursts induced by either GM-CSF or IL-3 produced similar levels of gamma-globin both in FBS- supplemented and in FBS-deprived cultures. These results, obtained even in cultures of highly enriched BFUe, suggest that GM-CSF and IL-3, although they significantly increase the number and size of erythroid bursts, do not by themselves exert a direct influence on the level of fetal globin synthesis. By contrast, factor(s) present in FBS appear to exert a dominant influence on fetal globin synthesis in vitro. Although FBS-deprived conditions appear to largely abrogate the in vitro activation of fetal hemoglobin (Hb F) in normal samples, they do support increased Hb F production in samples from patients with hereditary persistence of fetal hemoglobin or from cord blood.


Sign in / Sign up

Export Citation Format

Share Document