In vivo measurement of myocardial oxidative metabolism and blood flow does not show changes in cancer patients undergoing doxorubicin therapy

2000 ◽  
Vol 45 (5) ◽  
pp. 375-380 ◽  
Author(s):  
Patrice Nony ◽  
Jean-Paul Guastalla ◽  
Paul Rebattu ◽  
Patricia Landais ◽  
Michel Lievre ◽  
...  
2010 ◽  
Vol 298 (5) ◽  
pp. E1049-E1057 ◽  
Author(s):  
Sébastien L. Ménard ◽  
Etienne Croteau ◽  
Otman Sarrhini ◽  
Roselle Gélinas ◽  
Pascal Brassard ◽  
...  

The purpose of this study was to determine in vivo myocardial energy metabolism and function in a nutritional model of type 2 diabetes. Wistar rats rendered insulin-resistant and mildly hyperglycemic, hyperinsulinemic, and hypertriglyceridemic with a high-fructose/high-fat diet over a 6-wk period with injection of a small dose of streptozotocin (HFHFS) and control rats were studied using micro-PET (μPET) without or with a euglycemic hyperinsulinemic clamp. During glucose clamp, myocardial metabolic rate of glucose measured with [18F]fluorodeoxyglucose ([18F]FDG) was reduced by ∼81% ( P < 0.05), whereas myocardial plasma nonesterified fatty acid (NEFA) uptake as determined by [18F]fluorothia-6-heptadecanoic acid ([18F]FTHA) was not significantly changed in HFHFS vs. control rats. Myocardial oxidative metabolism as assessed by [11C]acetate and myocardial perfusion index as assessed by [13N]ammonia were similar in both groups, whereas left ventricular ejection fraction as assessed by μPET was reduced by 26% in HFHFS rats ( P < 0.05). Without glucose clamp, NEFA uptake was ∼40% lower in HFHFS rats ( P < 0.05). However, myocardial uptake of [18F]FTHA administered by gastric gavage was significantly higher in HFHFS rats ( P < 0.05). These abnormalities were associated with reduced Glut4 mRNA expression and increased Cd36 mRNA expression and mitochondrial carnitine palmitoyltransferase 1 activity ( P < 0.05). HFHFS rats display type 2 diabetes complicated by left ventricular contractile dysfunction with profound reduction in myocardial glucose utilization, activation of fatty acid metabolic pathways, and preserved myocardial oxidative metabolism, suggesting reduced myocardial metabolic efficiency. In this model, increased myocardial fatty acid exposure likely occurs from circulating triglyceride, but not from circulating plasma NEFA.


Author(s):  
Hideyuki Hasegawa ◽  
Michiya Mozumi ◽  
Masaaki Omura ◽  
Ryo Nagaoka ◽  
Kozue Saito

Abstract High-frame-rate ultrasound imaging with plane wave transmissions is a predominant method for blood flow imaging, and methods for estimation of blood flow velocity vectors have been developed based on high-frame-rate imaging. On the other hand, in imaging of soft tissues, such as arterial walls and atherosclerotic plaques, high-frame-rate imaging sometimes suffers from high-level clutters. Even in observation of the arterial wall with a focused transmit beam, it would be highly beneficial if blood flow velocity vectors could be estimated simultaneously. We conducted a preliminary study on estimation of blood flow velocity vectors based on a multi-angle Doppler method with focused transmit beam and parallel receive beamforming. It was shown that the lowest estimation error was achieved at a steering angle of 25 degrees by simulation. Also, velocity vectors with typical velocity magnitudes and directions could be obtained by the proposed method in in vivo measurement of a carotid artery.


1992 ◽  
pp. 311-315 ◽  
Author(s):  
I. A. Hein ◽  
J. Zachary ◽  
R. Fish ◽  
W. D. O’Brien

1992 ◽  
Vol 114 (4) ◽  
pp. 533-538 ◽  
Author(s):  
K. C. Warnke ◽  
T. C. Skalak

Leukocyte plugging of capillaries in vivo was measured in rat spinotrapezius muscle. The plug durations, leukocyte and capillary dimensions, and arteriolar pressure at the plug sites were applied to the mechanical model of Needham and Hochmuth (1990) to estimate the leukocyte viscosities. The viscosity distribution of 389 cells was lognormal with a median value of 232 Poise. 3.1 percent of the cells were apparently activated and displayed viscosities greater than 3000 Poise. The median viscosity suggests that inactivated leukocytes have a minimal effect on blood flow, but that leukocyte activation may result in significant increases in microvascular flow resistance.


1982 ◽  
Vol 243 (1) ◽  
pp. G1-G9 ◽  
Author(s):  
P. R. Kvietys ◽  
D. N. Granger

Many vasoactive agents are known to alter oxygen uptake by splanchnic organs. Data from the literature indicate that, in general, vasodilators increase, whereas vasoconstrictors decrease oxygen uptake. We compare and contrast the effects of vasoactive agents on oxygen uptake observed in vivo, under constant-flow and free-flow conditions, to those observed in vitro. The discrepancies between the in vivo and in vitro data are discussed relative to the effects of vasoactive agents on blood flow, intraorgan blood flow distribution, the countercurrent exchange of oxygen, capillary exchange capacity, and oxidative metabolism. Changes in blood flow, oxidative metabolism, and capillary density appear to be the major mechanisms by which vasoactive agents alter splanchnic oxygen uptake in vivo. Experimental designs are proposed that may help minimize inconsistencies in the data in future studies.


Sign in / Sign up

Export Citation Format

Share Document