POSITRON EMISSION TOMOGRAPHY FOR IN-VIVO MEASUREMENT OF REGIONAL BLOOD FLOW, OXYGEN UTILISATION, AND BLOOD VOLUME IN PATIENTS WITH BREAST CARCINOMA

The Lancet ◽  
1984 ◽  
Vol 323 (8369) ◽  
pp. 131-134 ◽  
Author(s):  
RonaldP. Beaney ◽  
Terry Jones ◽  
AdriaanA. Lammertsma ◽  
ChristopherG. Mckenzie ◽  
KeithE. Halnan
1984 ◽  
Vol 4 (3) ◽  
pp. 317-322 ◽  
Author(s):  
Adriaan A. Lammertsma ◽  
David J. Brooks ◽  
Ronald P. Beaney ◽  
David R. Turton ◽  
Malcolm J. Kensett ◽  
...  

A method is described for measuring the regional cerebral-to-large vessel haematocrit ratio using inhalation of carbon-11-labelled carbon monoxide and the intravenous injection of carbon-11-labelled methyl-albumin in combination with positron emission tomography. The mean value in a series of nine subjects was 0.69. This is ∼20% lower than the value of 0.85 previously reported. It is concluded that previous measurements of regional cerebral blood volume using a haematocrit ratio of 0.85 will have underestimated the value of regional cerebral blood volume by 20%.


1983 ◽  
Vol 3 (4) ◽  
pp. 432-441 ◽  
Author(s):  
Bernard E. Howard ◽  
Myron D. Ginsberg ◽  
William R. Hassel ◽  
Alan H. Lockwood ◽  
Philip Freed

Factors are examined in this report which govern the uniqueness and sensitivity of regional cerebral blood flow (rCBF), as determined by an in vivo autoradiographic strategy and positron emission tomography (PET), and a series of theorems is derived which specify conditions under which a unique relationship between cumulative cranial activity of the tracer ( C) and regional blood flow ( f) may be assured. It is demonstrated that, independent of the specific form of the arterial tracer input function, flow is a unique function of C whenever the start time ( T1) of the PET scan is coincident with the start of tracer infusion. Other theorems state that, even for nonzero T1s, a unique solution for flow may be expected, as long as the duration of the scan is sufficiently short. The implementation of this theory is illustrated using arterial tracer activity curves obtained in three normal subjects by a multiple arterial sampling procedure following the bolus i. v. infusion of 20–30 μCi of [15O]water. Based on these arterial curves, it is confirmed that the C vs. f relationship resulting from scan parameters T1 = 0 and T2 = 1.5 min (i.e., a PET scan of 90 s commencing with tracer infusion) has an excellent separation of flow values within the range of physiological interest, whereas a 90-s scan beginning at time T1 = 1.7 min results in poorer separation of flow values and loss of the monotonic relationship between C and f at higher flows. The results of this study serve to clarify the in vivo autoradiographic method for measuring rCBF in humans and help to define favorable study parameters for assuring uniqueness and sensitivity of the flow measurement.


2001 ◽  
Vol 21 (12) ◽  
pp. 1472-1479 ◽  
Author(s):  
Hidehiko Okazawa ◽  
Hiroshi Yamauchi ◽  
Kanji Sugimoto ◽  
Hiroshi Toyoda ◽  
Yoshihiko Kishibe ◽  
...  

To evaluate changes in cerebral hemodynamics and metabolism induced by acetazolamide in healthy subjects, positron emission tomography studies for measurement of cerebral perfusion and oxygen consumption were performed. Sixteen healthy volunteers underwent positron emission tomography studies with15O-gas and water before and after intravenous administration of acetazolamide. Dynamic positron emission tomography data were acquired after bolus injection of H215O and bolus inhalation of15O2. Cerebral blood flow, metabolic rate of oxygen, and arterial-to-capillary blood volume images were calculated using the three-weighted integral method. The images of cerebral blood volume were calculated using the bolus inhalation technique of C15O. The scans for cerebral blood flow and volume and metabolic rate of oxygen after acetazolamide challenge were performed at 10, 20, and 30 minutes after drug injection. The parametric images obtained under the two conditions at baseline and after acetazolamide administration were compared. The global and regional values for cerebral blood flow and volume and arterial-to-capillary blood volume increased significantly after acetazolamide administration compared with the baseline condition, whereas no difference in metabolic rate of oxygen was observed. Acetazolamide-induced increases in both blood flow and volume in the normal brain occurred as a vasodilatory reaction of functioning vessels. The increase in arterial-to-capillary blood volume made the major contribution to the cerebral blood volume increase, indicating that the raise in cerebral blood flow during the acetazolamide challenge is closely related to arterial-to-capillary vasomotor responsiveness.


1982 ◽  
Vol 2 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Myron D. Ginsberg ◽  
Alan H. Lockwood ◽  
Raul Busto ◽  
Ronald D. Finn ◽  
Cathy M. Butler ◽  
...  

A simplified mathematical model is described for the measurement of regional cerebral blood flow by positron emission tomography in man, based on a modification of the autoradiographic strategy originally developed for experimental animal studies. A modified ramp intravenous infusion of radiolabeled tracer is used; this results in a monotonically increasing curvilinear arterial activity curve that may be accurately described by a polynomial of low degree (= z). Integrated cranial activity C̄ B is measured in regions of interest during the latter portion of the tracer infusion period (times T1 to T2). It is shown that [Formula: see text] where each of the terms A x is a readily evaluated function of the blood flow rate constant k, the brain:blood partition coefficient for the tracer, the cranial activity integration limits T1 and T2, the coefficients of the polynomial describing the arterial curve, and an iteration factor n that is chosen to yield the desired degree of precision. This relationship permits generation of a table of C̄ B vs. k, thus facilitating on-line computer solution for blood flow. This in vivo autoradiographic paradigm was validated in a series of rats by comparing it to the classical autoradiographic strategy developed by Kety and associates. Excellent agreement was demonstrated between blood flow values obtained by the two methods: CBF in vivo = CBFclassical X 0.99 − 0.02 (units in ml g−1 min−1; correlation coefficient r = 0.966).


Sign in / Sign up

Export Citation Format

Share Document