scholarly journals Dependence of Coefficient of volumetric thermal expansion (CVTE) of glass fiber reinforced (GFR) polymers on the glass fiber content

2007 ◽  
Vol 59 (6) ◽  
pp. 813-824 ◽  
Author(s):  
V. La Carrubba ◽  
M. Bulters ◽  
W. Zoetelief
Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1908 ◽  
Author(s):  
Zhende Zhu ◽  
Cong Zhang ◽  
Songsong Meng ◽  
Zhenyue Shi ◽  
Shanzhi Tao ◽  
...  

The addition of alkali-resistant glass fiber to concrete effectively suppresses the damage evolution such as microcrack initiation, expansion, and nucleation and inhibits the development and penetration of microcracks, which is very important for the long-term stability and safety of concrete structures. We conducted indoor flat tensile tests to determine the occurrence and development of cracks in alkali-resistant glass fiber reinforced concrete (AR-GFRC). The composite material theory and Krajcinovic vector damage theory were used to correct the quantitative expressions of the fiber discontinuity and the elastic modulus of the concrete. The Weibull distribution function was used and an equation describing the damage evolution of the AR-GFRC was derived. The constitutive equation was validated using numerical parameter calculations based on the elastic modulus, the fiber content, and a performance test of polypropylene fiber. The results showed that the tensile strength and peak strength of the specimen were highest at a concrete fiber content of 1%. The changes in the macroscopic stress–strain curve of the AR-GFRC were determined and characterized by the model. The results of this study provide theoretical support and reference data to ensure safety and reliability for practical concrete engineering.


2014 ◽  
Vol 984-985 ◽  
pp. 360-366 ◽  
Author(s):  
S. Srinivasa Moorthy ◽  
K. Manonmani ◽  
M. Sankar Kumar

Polyester based glass fiber reinforced polymer (GFRP) composites are widely used in marine and automotive industries because of its strength to weight ratio with lower price. In order to have the better properties of GFRP composites, the particulate filler material titanium oxide (TiO2) was added in unsaturated polyester resin with the fiber reinforcement by hand lay-up process. The fiber content was kept at 35 wt% constant with the fiber length of 5 cm. The particulate was varied with 2 wt. %, 4 wt. %, 6 wt. %, 8 wt. %, and 10 wt. %. Experiments were carried out to study the mechanical properties like tensile strength, impact strength, and Rockwell hardness. The chemical resistance analysis (CRA) was carried out by weight loss method. The mechanical properties of the hybrid reinforced composites were improved due to the fiber content with increased particulate content. The influence of the particulate content was more pronounced in the chemical resistance.


2018 ◽  
Vol 68 (329) ◽  
pp. 147 ◽  
Author(s):  
W. H. Kwan ◽  
C. B. Cheah ◽  
M. Ramli ◽  
K. Y. Chang

The durability of the alkali-resistant (AR) glass fiber reinforced concrete (GFRC) in three simulated aggresive environments, namely tropical climate, cyclic air and seawater and seawater immersion was investigated. Durability examinations include chloride diffusion, gas permeability, X-ray diffraction (XRD) and scanning electron microscopy examination (SEM). The fiber content is in the range of 0.6 % to 2.4 %. Results reveal that the specimen containing highest AR glass fiber content suffered severe strength loss in seawater environment and relatively milder strength loss under cyclic conditions. The permeability property was found to be more inferior with the increase in the fiber content of the concrete. This suggests that the AR glass fiber is not suitable for use as the fiber reinforcement in concrete is exposed to seawater. However, in both the tropical climate and cyclic wetting and drying, the incorporation of AR glass fiber prevents a drastic increase in permeability.


2011 ◽  
Vol 181-182 ◽  
pp. 836-841
Author(s):  
Jiang Liu ◽  
Xiang Guo Liu

Influence of coupling agents on microstructure and mechanical properties of short glass fiber reinforced PA66 composites(SGF/PA66) were investigated by using twin screws extruder and injection machine in this paper. When coupling agents (A1100 or A1100+A+B) were added, short glass fiber was distributed in the PA66 matrix more homogeneously; at the same time, the microstructure and properties of GF/PA66 were improved too. Modified effect of multiple coupling agent (A1100+A+B) is better than that of only A1100 and the desired content of A1100 is about 1.5~2.0wt%. When glass fiber content was less than the critical value (35~40%), mechanical properties of PA composites increase with fiber content increasing, but it begin to decrease when content was excess that value. At last, Failure mechanism of GF/PA66 (treated by A1100 or A1100+A+B) was obtained: adhesion of interface between glass fiber and PA66 matrix, friction after the adhesion, glass fiber pullouted and matrix failure.


Sign in / Sign up

Export Citation Format

Share Document