scholarly journals Cellulose fiber-reinforced thermosetting composites: impact of cyanoethyl modification on mechanical, thermal and morphological properties

2018 ◽  
Vol 76 (8) ◽  
pp. 4295-4311 ◽  
Author(s):  
Md Rezaur Rahman ◽  
Sinin Hamdan ◽  
Zainab Binti Ngaini ◽  
Elammaran Jayamani ◽  
Akshay Kakar ◽  
...  
Author(s):  
S. F. K. Sherwani ◽  
S. M. Sapuan ◽  
Z. Leman ◽  
E. S. Zainudin ◽  
A. Khalina

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2664
Author(s):  
Yu Xue ◽  
Letian Qi ◽  
Zhaoyun Lin ◽  
Guihua Yang ◽  
Ming He ◽  
...  

In this study, a novel type of high-strength regenerated cellulose composite fiber reinforced with cellulose nanofibrils (CNFs) and nanosilica (nano-SiO2) was prepared. Adding 1% CNF and 1% nano-SiO2 to pulp/AMIMCl improved the tensile strength of the composite cellulose by 47.46%. The surface of the regenerated fiber exhibited a scaly structure with pores, which could be reduced by adding CNF and nano-SiO2, resulting in the enhancement of physical strength of regenerated fibers. The cellulose/AMIMCl mixture with or without the addition of nanomaterials performed as shear thinning fluids, also known as “pseudoplastic” fluids. Increasing the temperature lowered the viscosity. The yield stress and viscosity sequences were as follows: RCF-CNF2 > RCF-CNF2-SiO22 > RCF-SiO22 > RCF > RCF-CNF1-SiO21. Under the same oscillation frequency, G’ and G” decreased with the increase of temperature, which indicated a reduction in viscoelasticity. A preferred cellulose/AMIMCl mixture was obtained with the addition of 1% CNF and 1% nano-SiO2, by which the viscosity and shear stress of the adhesive were significantly reduced at 80 °C.


2006 ◽  
Vol 33 (2) ◽  
pp. 126-133 ◽  
Author(s):  
N Banthia ◽  
R Gupta ◽  
S Mindess

Early age shrinkage cracking remains a critical concern for cement-based repairs and overlays. Fibers mitigate such cracking, but no standardized technique of assessing the performance of a given fiber exists. Recently, a novel technique of making such an assessment was developed at The University of British Columbia (UBC). In this test method, currently being balloted through the ASTM, an overlay of fiber reinforced concrete (FRC) material to be tested is cast directly on a fully matured sub-base with protuberances, and the entire assembly is subjected to controlled drying. Cracking in the overlay is then monitored and characterized. The technique was recently employed to develop "crack-free" overlay materials for two repair sites. One was a parking garage in Downtown Vancouver, British Columbia, and the other was the plaza deck at The UBC Aquatic Center. For the parking garage, a carbon fiber reinforced concrete and for the plaza deck, a cellulose fiber reinforced concrete were developed. Both overlays were instrumented with strain sensors and data were monitored over the Internet.Key words: fiber reinforced concrete, shrinkage cracking, strain monitoring, carbon fibers, cellulose fibers.


2021 ◽  
pp. 004051752110432
Author(s):  
S Mohd Izwan ◽  
SM Sapuan ◽  
MYM Zuhri ◽  
AR Muhamed

The main purpose of this work is to investigate the effect of benzoyl treatment on the performance of sugar palm/kenaf fiber-reinforced polypropylene hybrid composites. Water absorption tests were carried out to confirm the effect of benzoylation treatment toward fabricating a more hydrophobic behavior of the hybrid composites. Both treated and untreated composites that have 10 wt.% of fiber loading with three different fiber ratios between sugar palm and kenaf (7:3, 5:5, 3:7) were analyzed. Physical and mechanical properties such as tensile, flexural, and impact strength were determined from this study. Morphological properties were obtained using scanning electron microscopy (SEM). It was found that the tensile strength of sugar palm/kenaf-reinforced polypropylene hybrid composites was improved with the treatment of benzoyl with a value of 19.41 MPa. In addition, hybrid composite with treated sugar palm and kenaf fiber T-SP3K7 recorded the highest impact and flexural strength of 19.4 MPa and 18.4 MPa, respectively. In addition, SEM demonstrated that surface treatment enhanced the mechanical properties of the hybrid composites. Overall, it can be suggested that benzoyl-treated composites with a higher volume of kenaf fiber than sugar palm fiber will improve the mechanical characteristics of the hybrid composites.


2007 ◽  
Vol 1 (3) ◽  
pp. 360-366 ◽  
Author(s):  
Gregory M. Glenn ◽  
Artur Klamczynski ◽  
Kevin M. Holtman ◽  
Bor-Sen Chiou ◽  
William J. Orts ◽  
...  

2013 ◽  
Vol 330 ◽  
pp. 77-81
Author(s):  
Yu Chen ◽  
David Bloomquist ◽  
Raphael Crowley

ASTM C78, the Flexural Strength tests were conducted on Cellulose Fiber Reinforced Concrete (CFRC) samples subjected to difference moisture-levels to quantify the effect of moisture on them. Results indicated that modulus elasticity did not change along the increase in moisture. However, flexural strength and yield strength appeared to be affected under certain conditions.


2008 ◽  
Vol 47-50 ◽  
pp. 486-489 ◽  
Author(s):  
Kasama Jarukumjorn ◽  
Nitinat Suppakarn ◽  
Jongrak Kluengsamrong

Natural fiber reinforced polymer composites became more attractive due to their light weight, high specific strength, biodegradability. However, some limitations e.g. low modulus, poor moisture resistance were reported. The mechanical properties of natural fiber reinforced composites can be improved by hybridization with synthetic fibers such as glass fiber. In this research, mechanical properties of short sisal-PP composites and short sisal/glass fiber hybrid composites were studied. Polypropylene grafted with maleic anhydride (PP-g-MA) was used as a compatibilizer to enhance the compatibility between the fibers and polypropylene. Effect of weight ratio of sisal and glass fiber at 30 % by weight on the mechanical properties of the composites was investigated. Morphology of fracture surface of each composite was also observed.


Sign in / Sign up

Export Citation Format

Share Document