Coordinated regulation of iron metabolism in Cryptococcus neoformans by GATA and CCAAT transcription factors: connections with virulence

2021 ◽  
Author(s):  
Won Hee Jung ◽  
Eddy Sánchez-León ◽  
James W. Kronstad
2008 ◽  
Vol 105 (22) ◽  
pp. 7839-7844 ◽  
Author(s):  
M. Sakata-Yanagimoto ◽  
E. Nakagami-Yamaguchi ◽  
T. Saito ◽  
K. Kumano ◽  
K. Yasutomo ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (13) ◽  
pp. 4237-4245 ◽  
Author(s):  
Henry K. Bayele ◽  
Harry McArdle ◽  
Surjit K.S. Srai

Abstract Hepcidin is the presumed negative regulator of systemic iron levels; its expression is induced in iron overload, infection, and inflammation, and by cytokines, but is suppressed in hypoxia and anemia. Although the gene is exquisitely sensitive to changes in iron status in vivo, its mRNA is devoid of prototypical iron-response elements, and it is therefore not obvious how it may be regulated by iron flux. The multiplicity of effectors of its expression also suggests that the transcriptional circuitry controlling the gene may be very complex indeed. In delineating enhancer elements within both the human and mouse hepcidin gene promoters, we show here that members of the basic helix-loop-helix leucine zipper (bHLH-ZIP) family of transcriptional regulators control hepcidin expression. The upstream stimulatory factor 2 (USF2), previously linked to hepcidin through gene ablation in inbred mice, appears to exert a polar or cis-acting effect, while USF1 may act in trans to control hepcidin expression. In mice, we found variation in expression of both hepcidin genes, driven by these transcription factors. In addition, c-Myc and Max synergize to control the expression of this hormone, supporting previous findings for the role of this couple in regulating iron metabolism. Transcriptional activation by both USF1/USF2 and c-Myc/Max heterodimers occurs through E-boxes within the promoter. Site-directed mutagenesis of these elements rendered the promoter unresponsive to USF1/USF2 or c-Myc/Max. Dominant-negative mutants of USF1 and USF2 reciprocally attenuated promoter transactivation by both wild-type USF1 and USF2. Promoter occupancy by the transcription factors was confirmed by DNA-binding and chromatin immunoprecipitation assays. Taken together, it would appear that synergy between these members of the bHLH-ZIP family of transcriptional regulators may subserve an important role in iron metabolism as well as other pathways in which hepcidin may be involved.


Author(s):  
Diana K. Summers ◽  
Daniela S. Perry ◽  
Beiduo Rao ◽  
Hiten D. Madhani

ABSTRACTQsp1 is a secreted quorum sensing peptide required for virulence of the fungal meningitis pathogen Cryptococcus neoformans. Qsp1 functions to control cell wall integrity in vegetatively growing cells and also functions in mating. Rather than acting on a cell surface receptor, Qsp1 is imported to act intracellularly via the predicted oligopeptide transporter Opt1. Here, we identify a transcription factor network as a target of Qsp1. Using whole-genome chromatin immunoprecipitation, we find Qsp1 controls the genomic associations of three transcription factors to genes whose outputs are regulated by Qsp1. One of these transcription factors, Cqs2, is also required for the action of Qsp1 during mating, indicating that it might be a shared proximal target of Qsp1. Consistent with this hypothesis, deletion of CQS2 impacts the binding of other network transcription factors specifically to Qsp1-regulated genes. These genetic and genomic studies illuminate mechanisms by which an imported peptide acts to modulate eukaryotic gene expression.AUTHOR SUMMARYFor many fungal pathogens, the ability to adapt to changing and diverse environments forms the basis for their ability to infect and survive inside macrophages and other niches in the human body, and these changes are accomplished by transcription factors. Many pathogenic microbes coordinate their gene expression as a function of cell density in a process known as quorum sensing. Here, in the human fungal meningitis pathogen Cryptococcus neoformans, we find that an imported eukaryotic quorum sensing peptide that is important for virulence, Qsp1, controls the binding of three different transcription factors to promoters, thereby modulating the expression of Qsp1-regulated genes. This discovery reveals the mechanism for how an imported peptide affects gene expression.


Author(s):  
Sara JC Gosline ◽  
Allan M. Gurtan ◽  
Courtney K. JnBaptiste ◽  
Andrew Bosson ◽  
Pamela Milani ◽  
...  

mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Dongpil Lee ◽  
Eun-Ha Jang ◽  
Minjae Lee ◽  
Sun-Woo Kim ◽  
Yeonseon Lee ◽  
...  

ABSTRACT Melanin is an antioxidant polyphenol pigment required for the pathogenicity of many fungal pathogens, but comprehensive regulatory mechanisms remain unidentified. In this study, we systematically analyzed melanin-regulating signaling pathways in Cryptococcus neoformans and identified four melanin-regulating core transcription factors (TFs), Bzp4, Usv101, Mbs1, and Hob1, required for induction of the laccase gene (LAC1). Bzp4, Usv101, and Mbs1 independently regulate LAC1 induction, whereas Hob1 controls Bzp4 and Usv101 expression. Both Bzp4 and Usv101 are localized in the cytoplasm under nutrient-rich conditions (i.e., in the presence of yeast extract-peptone-dextrose [YPD] medium) but translocate into the nucleus upon nutrient starvation (i.e., in the presence of yeast nitrogen base [YNB] medium without glucose), and Mbs1 is constitutively localized in the nucleus. Notably, the cAMP pathway is not involved in regulation of the four TFs, but the high-osmolarity glycerol response (HOG) pathway negatively regulates induction of BZP4 and LAC1. Next, we searched for potential kinases upstream of the core TFs and identified nine core kinases; their deletion led to defective melanin production and LAC1 induction. Deletion of GSK3 or KIC1 abolished induction of LAC1 and BZP4 and perturbed nuclear translocation of Bzp4. Notably, Gsk3 also regulated expression of HOB1, USV101, and MBS1, indicating that it is a critical melanin-regulating kinase. Finally, an RNA sequencing-based transcriptome analysis of the wild-type strain and of bzp4Δ, usv101Δ, hob1Δ, and mbs1Δ strains under nutrient-rich and nutrient-starved conditions revealed that the melanin-regulating core TFs govern redundant and distinct classes of genes involved in a variety of biological processes. IMPORTANCE Melanins are dark green, brown, or black pigments that serve as antioxidant, reactive oxygen species (ROS) scavengers that protect fungal pathogens from radiation and host immune responses. Cryptococcus neoformans, the major etiological agent of fungal meningoencephalitis, also utilizes melanin as a key virulence factor. In this basidiomycete pathogen, melanin production is regulated by the cAMP and high-osmolarity glycerol response (HOG) pathways, and yet its complex signaling networks remain poorly described. In this study, we uncovered novel melanin synthesis regulatory networks consisting of core transcription factors (TFs), including Bzp4, Usv101, Hob1, and Mbs1, and core kinases Gsk3 and Kic1. These networks were identified through coupling systematic analyses of the expression and epistatic relationships of TF and kinase mutant libraries in the presence of diverse melanin substrates with transcriptome profiling of the core TF mutants. Thus, this report provides comprehensive insight into the melanin-regulating pathways in C. neoformans and other fungal pathogens.


Sign in / Sign up

Export Citation Format

Share Document