Characterisation of a tripartite nuclear localisation sequence in the regulatory protein Lys14 of Saccharomyces cerevisiae

2000 ◽  
Vol 38 (2) ◽  
pp. 78-86 ◽  
Author(s):  
Mohamed El Alami ◽  
André Feller ◽  
André Piérard ◽  
Evelyne Dubois
1987 ◽  
Vol 7 (1) ◽  
pp. 403-409
Author(s):  
R J Bram ◽  
R D Kornberg

A protein that binds specifically to Saccharomyces cerevisiae centromere DNA element I was purified on the basis of a nitrocellulose filter-binding assay. This protein, termed centromere-binding protein 1 (CP1), was heat stable and renaturable from sodium dodecyl sulfate (SDS), and assays of eluates from SDS gels indicated a molecular weight of 57,000 to 64,000. An activity with similar specificity and stability was detected in human lymphocyte extracts, and analysis in SDS gels revealed a molecular weight of 39,000 to 49,000. CP1-binding sites occurred not only at centromeres but also near many transcription units, for example, adjacent to binding sites for the GAL4-positive regulatory protein upstream of the GAL2 gene in S. cerevisiae and adjacent to the TATA element of the adenovirus major late promoter. A factor (termed USF) that binds to the latter site and stimulates transcription has been isolated from HeLa cells by others.


1990 ◽  
Vol 10 (5) ◽  
pp. 2224-2236
Author(s):  
N Ogawa ◽  
Y Oshima

The PHO4 gene encodes a positive regulatory factor involved in regulating transcription of various genes in the phosphatase regulon of Saccharomyces cerevisiae. Besides its own coding region, the 1.8-kilobase PHO4 transcript contains a coding region for a mitochondrial protein which does not appear to be translated. Four functional domains were found in the PHO4 protein, which consists of 312 amino acid (aa) residues as deduced from the open reading frame of PHO4. A gel retardation assay with beta-galactosidase::PHO4 fused protein revealed that the 85-aa C terminus is the domain responsible for binding to the promoter DNA of PHO5, a gene under the control of PHO4. This region has similarities with the amphipathic helix-loop-helix motif of c-myc protein. Determination of the nucleotide sequences of four PHO4c mutant alleles and insertion and deletion analyses of PHO4 DNA indicated that a region from aa 163 to 202 is involved in interaction with a negative regulatory factor PHO80. Complementation of a pho4 null allele with the modified PHO4 DNAs suggested that the N-terminal region (1 to 109 aa), which is rich in acidic aa, is the transcriptional activation domain. The deleterious effects of various PHO4 mutations on the constitutive transcription of PHO5 in PHO4c mutant cells suggested that the region from aa 203 to 227 is involved in oligomerization of the PHO4 protein.


1993 ◽  
Vol 13 (6) ◽  
pp. 3744-3755 ◽  
Author(s):  
C S Stueland ◽  
D J Lew ◽  
M J Cismowski ◽  
S I Reed

In most cells, mitosis is dependent upon completion of DNA replication. The feedback mechanisms that prevent entry into mitosis by cells with damaged or incompletely replicated DNA have been termed checkpoint controls. Studies with the fission yeast Schizosaccharomyces pombe and Xenopus egg extracts have shown that checkpoint controls prevent activation of the master regulatory protein kinase, p34cdc2, that normally triggers entry into mitosis. This is achieved through inhibitory phosphorylation of the Tyr-15 residue of p34cdc2. However, studies with the budding yeast Saccharomyces cerevisiae have shown that phosphorylation of this residue is not essential for checkpoint controls to prevent mitosis. We have investigated the basis for checkpoint controls in this organism and show that these controls can prevent entry into mitosis even in cells which have fully activated the cyclin B (Clb)-associated forms of the budding yeast homolog of p34cdc2, p34CDC28, as assayed by histone H1 kinase activity. However, the active complexes in checkpoint-arrested cells are smaller than those in cycling cells, suggesting that assembly of mitosis-inducing complexes requires additional steps following histone H1 kinase activation.


1987 ◽  
Vol 7 (3) ◽  
pp. 1111-1121 ◽  
Author(s):  
L V Wray ◽  
M M Witte ◽  
R C Dickson ◽  
M I Riley

Lactose or galactose induces the expression of the lactose-galactose regulon in Kluyveromyces lactis. We show here that the regulon is not induced in strains defective in LAC9. We demonstrate that this gene codes for a regulatory protein that acts in a positive manner to induce transcription. The LAC9 gene was isolated by complementation of a lac9 defective strain. DNA sequence analysis of the gene gave a deduced protein of 865 amino acids. Comparison of this sequence with that of the GAL4 protein of Saccharomyces cerevisiae revealed three regions of homology. One region of about 90 amino acid occurs at the amino terminus, which is known to mediate binding of GAL4 protein to upstream activator sequences. We speculate that a portion of this region, adjacent to the "metal-binding finger," specifies DNA binding. We discuss possible functions of the two other regions of homology. The functional implications of these structural similarities were examined. When LAC9 was introduced into a gal4 defective strain of S. cerevisiae it complemented the mutation and activated the galactose-melibiose regulon. However, LAC9 did not simply mimic GAL4. Unlike normal S. cerevisiae carrying GAL4, the strain carrying LAC9 gave constitutive expression of GAL1 and MEL1, two genes in the regulon. The strain did show glucose repression of the regulon, but repression was less severe with LAC9 than with GAL4. We discuss the implications of these results and how they may facilitate our understanding of the LAC9 and GAL4 regulatory proteins.


2002 ◽  
Vol 22 (5) ◽  
pp. 1607-1614 ◽  
Author(s):  
Laura L. Newcomb ◽  
Duane D. Hall ◽  
Warren Heideman

ABSTRACT Transcription of the CLN3 G1 cyclin in Saccharomyces cerevisiae is positively regulated by glucose in a process that involves a set of DNA elements with the sequence AAGAAAAA (A2GA5). To identify proteins that interact with these elements, we used a 1-hybrid approach, which yielded a nuclear zinc finger protein previously identified as Azf1. Gel shift and chromatin immunoprecipitation experiments show that Azf1 binds to the A2GA5 CLN3 regulatory sequences in vitro and in vivo, thus identifying a transcriptional regulatory protein for CLN3 and a DNA sequence target for Azf1. We show that glucose-induced expression of a reporter gene driven by the A2GA5 CLN3 regulatory sequences is dependent upon the presence of AZF1. Furthermore, deletion of AZF1 markedly reduces the transcriptional induction of CLN3 by glucose. In addition, Azf1 can induce reporter expression in a glucose-specific manner when artificially tethered to a promoter via the DNA-binding domain from Gal4. We conclude that AZF1 is a glucose-dependent transcription factor that interacts with the CLN3 A2GA5 repeats to play a positive role in the regulation of CLN3 mRNA expression by glucose.


1989 ◽  
Vol 9 (7) ◽  
pp. 3009-3017 ◽  
Author(s):  
Y Nogi ◽  
T Fukasawa

To study the functional domains of a transcriptional repressor encoded by the GAL80 gene of Saccharomyces cerevisiae, we constructed various deletion and insertion mutations in the GAL80 coding region and determined the ability of these mutations to repress synthesis of galactose-metabolizing enzymes as well as the capacity of the mutant proteins to respond to the inducer. Two regions, from amino acids 1 to 321 and from amino acids 341 to 423, in the total sequence of 435 amino acids were required for repression. The internal region from amino acids 321 to 340 played a role in the response to the inducer. The 12 amino acids at the carboxy terminus were dispensable for normal functioning of the GAL80 protein. Using indirect immunofluorescence and subcellular fractionation techniques, we also found that two distinct regions (amino acids 1 to 109 and 342 to 405) within the putative repression domain were capable of directing cytoplasmically synthesized Escherichia coli beta-galactosidase to the yeast nucleus. In addition, three gal80 mutations were mapped at amino acid residues 183, 298, and 310 in the domain required for repression. On the basis of these results, we suggest that the GAL80 protein consists of a repression domain located in two separate regions (amino acid residues 1 to 321 and 341 to 423) that are interrupted by an inducer interaction domain (residues 322 to 340) and two nuclear localization domains (1 to 109 and 342 to 405) that overlap the repression domains.


2005 ◽  
Vol 16 (4) ◽  
pp. 2119-2127 ◽  
Author(s):  
Yin Zheng ◽  
Yu Jiang

Phosphotyrosyl phosphatase activator PTPA is a type 2A phosphatase regulatory protein that possesses an ability to stimulate the phosphotyrosyl phosphatase activity of PP2A in vitro. In yeast Saccharomyces cerevisiae, PTPA is encoded by two related genes, RRD1 and RRD2, whose products are 38 and 37% identical, respectively, to the mammalian PTPA. Inactivation of either gene renders yeast cells rapamycin resistant. In this study, we investigate the mechanism underling rapamycin resistance associated with inactivation of PTPA in yeast. We show that the yeast PTPA is an integral part of the Tap42–phosphatase complexes that act downstream of the Tor proteins, the target of rapamycin. We demonstrate a specific interaction of Rrd1 with the Tap42–Sit4 complex and that of Rrd2 with the Tap42–PP2Ac complex. A small portion of PTPA also is found to be associated with the AC dimeric core of PP2A, but the amount is significantly less than that associated with the Tap42-containing complexes. In addition, our results show that the association of PTPA with Tap42–phosphatase complexes is rapamycin sensitive, and importantly, that rapamycin treatment results in release of the PTPA-phosphatase dimer as a functional phosphatase unit.


Sign in / Sign up

Export Citation Format

Share Document