Capsaicinoid biosynthesis in the pericarp of chili pepper fruits is associated with a placental septum-like transcriptome profile and tissue structure

Author(s):  
Yoshiyuki Tanaka ◽  
Mayuko Watachi ◽  
Wakana Nemoto ◽  
Tanjuro Goto ◽  
Yuichi Yoshida ◽  
...  
2010 ◽  
Vol 30 (5) ◽  
pp. 695-706 ◽  
Author(s):  
Cesar Aza-González ◽  
Hector G. Núñez-Palenius ◽  
Neftalí Ochoa-Alejo

Author(s):  
R. M. S. M. B. Rathnayaka ◽  
Fumiya Kondo ◽  
Sudasinghe Sathya Prabandaka ◽  
Kazuhiro Nemoto ◽  
Kenichi Matsushima

Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


2020 ◽  
pp. 75-77
Author(s):  
Ekaterina Sergeevna Krasnikova ◽  
Natalya Lvovna Morgunova ◽  
Phelix Yakovlevich Rudik ◽  
Aleksandr Vladimirovich Krasnikov ◽  
Nikita Andreevich Semilet

The results of a study of the effect of wet ultrasonic lamb meat salting on the muscle tissue microstructure are presented, and the technical parameters of the ultrasonic device are justified. It has been established that significant destruction and swelling of muscle fibers, local destruction of the sarcolemma with its pronounced rugosity are observed at ultrasonic salting with a frequency of 35 kHz, the cross-striation is poorly expressed, the tissue structure is disturbed. An ultrasonic salting with a frequency of 26 kHz was accompanied an increase in the number of transverse microcracks and crevices, loosening of muscle fibers, the formation of cavities between them while retention of the tissue structure, which contributes to the appearance of a brine between muscle fibers and accelerates its penetration into the fiber. It allows us to recommend ultrasound at a frequency of 26 kHz for cavitation activation of the brine to intensify the technological process of lamb meat salting.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Emilia Solomon ◽  
Katie Davis-Anderson ◽  
Blake Hovde ◽  
Sofiya Micheva-Viteva ◽  
Jennifer Foster Harris ◽  
...  

Abstract Background Human induced pluripotent stem cells (iPSC) have opened new avenues for regenerative medicine. Consequently, iPSC-derived motor neurons have emerged as potentially viable therapies for spinal cord injuries and neurodegenerative disorders including Amyotrophic Lateral Sclerosis. However, direct clinical application of iPSC bears in itself the risk of tumorigenesis and other unforeseeable genetic or epigenetic abnormalities. Results Employing RNA-seq technology, we identified and characterized gene regulatory networks triggered by in vitro chemical reprogramming of iPSC into cells with the molecular features of motor neurons (MNs) whose function in vivo is to innervate effector organs. We present meta-transcriptome signatures of 5 cell types: iPSCs, neural stem cells, motor neuron progenitors, early motor neurons, and mature motor neurons. In strict response to the chemical stimuli, along the MN differentiation axis we observed temporal downregulation of tumor growth factor-β signaling pathway and consistent activation of sonic hedgehog, Wnt/β-catenin, and Notch signaling. Together with gene networks defining neuronal differentiation (neurogenin 2, microtubule-associated protein 2, Pax6, and neuropilin-1), we observed steady accumulation of motor neuron-specific regulatory genes, including Islet-1 and homeobox protein HB9. Interestingly, transcriptome profiling of the differentiation process showed that Ca2+ signaling through cAMP and LPC was downregulated during the conversion of the iPSC to neural stem cells and key regulatory gene activity of the pathway remained inhibited until later stages of motor neuron formation. Pathways shaping the neuronal development and function were well-represented in the early motor neuron cells including, neuroactive ligand-receptor interactions, axon guidance, and the cholinergic synapse formation. A notable hallmark of our in vitro motor neuron maturation in monoculture was the activation of genes encoding G-coupled muscarinic acetylcholine receptors and downregulation of the ionotropic nicotinic acetylcholine receptors expression. We observed the formation of functional neuronal networks as spontaneous oscillations in the extracellular action potentials recorded on multi-electrode array chip after 20 days of differentiation. Conclusions Detailed transcriptome profile of each developmental step from iPSC to motor neuron driven by chemical induction provides the guidelines to novel therapeutic approaches in the re-construction efforts of muscle innervation.


Sign in / Sign up

Export Citation Format

Share Document