scholarly journals From polar night to midnight sun: photoperiod, seal predation, and the diel vertical migrations of polar cod (Boreogadus saida) under landfast ice in the Arctic Ocean

Polar Biology ◽  
2010 ◽  
Vol 33 (11) ◽  
pp. 1505-1520 ◽  
Author(s):  
Delphine Benoit ◽  
Yvan Simard ◽  
Jacques Gagné ◽  
Maxime Geoffroy ◽  
Louis Fortier
Polar Biology ◽  
2018 ◽  
Vol 41 (6) ◽  
pp. 1269-1278 ◽  
Author(s):  
Susanne Kühn ◽  
Fokje L. Schaafsma ◽  
Bernike van Werven ◽  
Hauke Flores ◽  
Melanie Bergmann ◽  
...  

2021 ◽  
Vol 325 (2) ◽  
pp. 248-268
Author(s):  
N.V. Chernova ◽  
V.A. Spiridonov ◽  
V.L. Syomin ◽  
M.V. Gavrilo

Data on the fishes of the high-latitude Severnaya Zemlya archipelago (the North Land) is presented. The archipelago is located in the Arctic on the border between the Kara Sea and the Laptev Sea. The ichthyofauna of the archipelago has not been studied; therefore, even small collections are of interest. Fish samples were obtained during the expedition “Open Ocean: Arctic Archipelagos – 2019: Severnaya Zemlya”. In addition, the samples from this area in the collections of the Zoological Institute (ZIN) were studied, which have been received from polar expeditions to the Kara and Laptev seas during the entire era of polar research. The most significant fact is the discovery of mass accumulation of polar cod Boreogadus saida (Lepechin, 1774) larvae in Mikoyan Bay (Bolshevik Island), which gives evidence of important spawning grounds near Severnaya Zemlya. Indirect evidence of this can be found in the publications of polar explorers who overwintered on Severnaya Zemlya in the 1930s–1950s and have reported that the polar cod approaches the shores for spawning in August, in huge schools. The waters of Severnaya Zemlya represent the spawning area of polar cod in the central part of the Eurasian shelf, which is not mentioned in current literature. In addition to polar cod, a few more species are registered in samples from the coastal waters of the archipelago (depths to 38 m), rough hookear sculpin Artediellus scaber Knipowitsch, 1907, twohorn sculpin Icelus bicornis (Reinhardt, 1840) (family Cottidae), Liparis tunicatus Reinhardt, 1836, black-bellied snailfish L. cf. fabricii (Liparidae), Knipowich eelpout Gymnelus knipowitschi Chernova, 1999 (Zoarcidae) and three-spined stickleback Gasterosteus aculeatus (Linnaeus, 1758) (Gasterosteidae). In the deepwater straits, snailfish Careproctus sp. (174–234 m) and pale eelpout Lycodes pallidus Collett, 1879 (105–348 m) were found. The Arctic charr Salvelinus alpinus (Linnaeus, 1758) (Salmonidae) inhabits some lakes of the archipelago. This is the first finding of a three-spined stickleback in the east of the Kara Sea.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Matthias Wietz ◽  
Christina Bienhold ◽  
Katja Metfies ◽  
Sinhué Torres-Valdés ◽  
Wilken-Jon von Appen ◽  
...  

AbstractThe Arctic Ocean features extreme seasonal differences in daylight, temperature, ice cover, and mixed layer depth. However, the diversity and ecology of microbes across these contrasting environmental conditions remain enigmatic. Here, using autonomous samplers and sensors deployed at two mooring sites, we portray an annual cycle of microbial diversity, nutrient concentrations and physical oceanography in the major hydrographic regimes of the Fram Strait. The ice-free West Spitsbergen Current displayed a marked separation into a productive summer (dominated by diatoms and carbohydrate-degrading bacteria) and regenerative winter state (dominated by heterotrophic Syndiniales, radiolarians, chemoautotrophic bacteria, and archaea). The autumn post-bloom with maximal nutrient depletion featured Coscinodiscophyceae, Rhodobacteraceae (e.g. Amylibacter) and the SAR116 clade. Winter replenishment of nitrate, silicate and phosphate, linked to vertical mixing and a unique microbiome that included Magnetospiraceae and Dadabacteriales, fueled the following phytoplankton bloom. The spring-summer succession of Phaeocystis, Grammonema and Thalassiosira coincided with ephemeral peaks of Aurantivirga, Formosa, Polaribacter and NS lineages, indicating metabolic relationships. In the East Greenland Current, deeper sampling depth, ice cover and polar water masses concurred with weaker seasonality and a stronger heterotrophic signature. The ice-related winter microbiome comprised Bacillaria, Naviculales, Polarella, Chrysophyceae and Flavobacterium ASVs. Low ice cover and advection of Atlantic Water coincided with diminished abundances of chemoautotrophic bacteria while others such as Phaeocystis increased, suggesting that Atlantification alters microbiome structure and eventually the biological carbon pump. These insights promote the understanding of microbial seasonality and polar night ecology in the Arctic Ocean, a region severely affected by climate change.


2021 ◽  
Author(s):  
Matthias Wietz ◽  
Christina Bienhold ◽  
Katja Metfies ◽  
Sinhue Torres-Valdes ◽  
Wilken-Jon von Appen ◽  
...  

Change is a constant in the Arctic Ocean, with extreme seasonal differences in daylight, ice cover and temperature. The biodiversity and ecology of marine microbes across these extremes remain poorly understood. Here, using an array of autonomous samplers and sensors, we portray an annual cycle of microbial biodiversity, nutrient budgets and oceanography in the major biomes of the Fram Strait. In the ice-free West Spitsbergen Current, community turnover followed the solar cycle, with distinct separation of a productive summer state dominated by diatoms and carbohydrate-degrading bacteria, and a regenerative winter state dominated by heterotrophic Syndiniales, radiolarians, chemoautotrophic bacteria and archaea. Winter mixing of the water column replenishing nitrate, phosphate and silicate, and the onset of light were the major turning points. The summer succession of Phaeocystis, Grammonema and Thalassiosira coincided with ephemeral peaks of Formosa, Polaribacter and NS clades, indicating metabolic relationships between phytoplankton and bacteria. In the East Greenland Current, ice cover and greater sampling depth coincided with weaker seasonality, featuring weaker bloom/decay events and an ice-related winter microbiome. Low ice cover and advection of Atlantic Water coincided with diminished abundances of chemoautotrophic bacteria while Phaeocystis and Flavobacteriaceae increased, suggesting that Atlantification alters phytoplankton diversity and the biological carbon pump. Our findings promote the understanding of microbial seasonality in Arctic waters, illustrating the ecological importance of the polar night and providing an essential baseline of microbial dynamics in a region severely affected by climate change.


Sign in / Sign up

Export Citation Format

Share Document