scholarly journals Macroscopic characteristics facilitate identification of common Antarctic glass sponges (Porifera, Hexactinellida, Rossellidae)

Polar Biology ◽  
2020 ◽  
Vol 43 (2) ◽  
pp. 91-110 ◽  
Author(s):  
Luisa Federwisch ◽  
Dorte Janussen ◽  
Claudio Richter
Keyword(s):  
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Anatoliy L. Drozdov ◽  
Alexander A. Karpenko

The morphology, chemical composition, and optical properties of long monoaxonic spicules were studied in several species of marine deep-sea hexactinellid sponges of different orders and families: Asconema setubalense (Hexasterophora, Lyssacinosida) and Monorhaphis chuni Schulze (Monorhaphiidae). Their macrostructural organization is a system of thin layers laid around the central cylinder containing a square canal filled with organic matter. A significant role in spicule organization is played by the organic matrix. The macrostructural of organization of the spicule in Monorhaphis chuni is a system of the “cylinder-within-a-cylinder” type. However the spicule surface is covered with ridges. They penetrate a few layers into the spicule. Analysis of the elemental composition of the basalia spicule of Monorhaphis chuni demonstrates a heterogeneous allocation of C, O, Si on the spicule surface, subsurface layers, and on ridges. All studied spicules have the properties of anisotropic crystals and they demonstrate a capability to the birefrigence. On the other hand we discovered unique property of spicules—their capacity for triboluminescence. The discovery of triboluminescence in composite organosilicon materials of which the spicules of hexactinellid sponges are built may contribute to the creation of biomimetic materials capable of generating light emission.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11972
Author(s):  
Samuel Georgian ◽  
Lance Morgan ◽  
Daniel Wagner

The Salas y Gómez and Nazca ridges are two adjacent seamount chains off the west coast of South America that collectively contain more than 110 seamounts. The ridges support an exceptionally rich diversity of benthic and pelagic communities, with the highest level of endemism found in any marine environment. Despite some historical fishing in the region, the seamounts are relatively pristine and represent an excellent conservation opportunity to protect a global biodiversity hotspot before it is degraded. One obstacle to effective spatial management of the ridges is the scarcity of direct observations in deeper waters throughout the region and an accompanying understanding of the distribution of key taxa. Species distribution models are increasingly used tools to quantify the distributions of species in data-poor environments. Here, we focused on modeling the distribution of demosponges, glass sponges, and stony corals, three foundation taxa that support large assemblages of associated fauna through the creation of complex habitat structures. Models were constructed at a 1 km2 resolution using presence and pseudoabsence data, dissolved oxygen, nitrate, phosphate, silicate, aragonite saturation state, and several measures of seafloor topography. Highly suitable habitat for each taxa was predicted to occur throughout the Salas y Gómez and Nazca ridges, with the most suitable habitat occurring in small patches on large terrain features such as seamounts, guyots, ridges, and escarpments. Determining the spatial distribution of these three taxa is a critical first step towards supporting the improved spatial management of the region. While the total area of highly suitable habitat was small, our results showed that nearly all of the seamounts in this region provide suitable habitats for deep-water corals and sponges and should therefore be protected from exploitation using the best available conservation measures.


2018 ◽  
Vol 69 (2) ◽  
pp. 149-168 ◽  
Author(s):  
Mathias Harzhauser ◽  
Patrick Grunert ◽  
Oleg Mandic ◽  
Petra Lukeneder ◽  
Ángela García Gallardo ◽  
...  

AbstractHydrocarbon exploration in the Bernhardsthal and Bernhardsthal-Sued oil fields documents an up to 2000 m thick succession of middle and upper Badenian deposits in this part of the northern Vienna Basin (Austria). Based on palaeontological analyses of core-samples, well-log data and seismic surveys we propose an integrated stratigraphy and describe the depositional environments. As the middle/late Badenian boundary is correlated with the Langhian/Serravallian boundary, the cores capture the crucial phase of the Middle Miocene Climate Transition. The middle Badenian starts with a major transgression leading to outer neritic to upper bathyal conditions in the northern Vienna Basin, indicated byBathysiphon-assemblages and glass-sponges. A strong palaeo-relief and rapid synsedimentary subsidence accentuated sedimentation during this phase. The middle/late Badenian boundary coincides with a major drop of relative sea level by about 200 m, resulting in a rapid shift from deeper marine depositional environments to coastal and freshwater swamps. In coeval marine settings, a more than 100 m thick unit of anhydrite-bearing clay formed. This is the first evidence of evaporite precipitation during the Badenian Salinity Crisis in the Vienna Basin. Shallow lagoonal environments with diverse and fully marine mollusc and fish assemblages were established during the subsequent late Badenian re-flooding. In composition, the mollusc fauna differs considerably from older ones and is characterized by the sudden appearance of species with eastern Paratethyan affinities.


2019 ◽  
Vol 138 (4) ◽  
Author(s):  
Keenan C. Guillas ◽  
Amanda S. Kahn ◽  
Nathan Grant ◽  
Stephanie K. Archer ◽  
Anya Dunham ◽  
...  

2008 ◽  
Vol 57 (3) ◽  
pp. 388-405 ◽  
Author(s):  
Martin Dohrmann ◽  
Dorte Janussen ◽  
Joachim Reitner ◽  
Allen G. Collins ◽  
Gert Wörheide

Zootaxa ◽  
2013 ◽  
Vol 3628 (1) ◽  
pp. 1-64 ◽  
Author(s):  
HENRY M. REISWIG ◽  
ROBERT P. STONE

Hexactinellida from deep-water communities of the central Aleutian Islands, Alaska, are described. They were mostly collected by the remotely operated vehicle 'Jason II' from 494–2311 m depths during a 2004 RV 'Roger Revelle' expedition, but one shallow-water species collected with a shrimp trawl from 155 m in the same area is included. The excellent condition of the ROV-collected specimens enabled valuable redescription of some species previously known only from badly damaged specimens. New taxa include one new genus and eight new species in five families. Farreidae consist of two new species, Farrea aleutiana and F. aspondyla. Euretidae consists of only Pinulasma fistulosum n. gen., n. sp. Tretodictyidae include only Tretodictyum amchitkensis n. sp. Euplectellidae consists of only the widespread species Regadrella okinoseana Ijima, reported here over 3,700 km from its closest previously known occurrence. The most diverse family, Rossellidae, consists of Aulosaccus ijimai (Schulze), Aulosaccus schulzei Ijima, Bathydorus sp. (young stage not determinable to species), Caulophacus (Caulophacus) adakensis n. sp., Acanthascus koltuni n. sp., Staurocalyptus psilosus n. sp., Staurocalyptus tylotus n. sp. and Rhabdocalyptus mirabilis Schulze. We present argument for reinstatement of the abolished rossellid subfamily Acanthascinae and return of the subgenera Staurocalyptus Ijima and Rhabdocalyptus Schulze to their previous generic status. These fauna provides important complexity to the hard substrate communities that likely serve as nursery areas for the young stages of commercially important fish and crab species, refuge from predation for both young and adult stages, and also as a focal source of prey for juvenile and adult stages of those same species.


2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Martin Dohrmann ◽  
Christopher Kelley ◽  
Michelle Kelly ◽  
Andrzej Pisera ◽  
John N. A. Hooper ◽  
...  

2003 ◽  
Vol 22 (2) ◽  
pp. 209-218
Author(s):  
Linda Hernick
Keyword(s):  
New York ◽  

James Hall (1811-1898), second State Paleontologist of New York, is considered by many to be the "Father of American Paleontology." However, Hall could never have achieved this stature without his legion of amateurs. Among the most dedicated and prolific of these was Edwin Bradford Hall (1825-1908). His collection of 5,500 Devonian glass sponges, the largest collection in the world, provided James Hall with the material to write his massive 1898 monograph on these problematical fossils.


Sign in / Sign up

Export Citation Format

Share Document