Gene flow of unique sequences between Mus musculus domesticus and Mus spretus

2000 ◽  
Vol 11 (3) ◽  
pp. 225-230 ◽  
Author(s):  
Rhonda Greene-Till ◽  
Yingping Zhao ◽  
Stephen C. Hardies

1989 ◽  
Vol 53 (1) ◽  
pp. 29-44 ◽  
Author(s):  
Janice Britton-Davidian ◽  
Joseph H. Nadeau ◽  
Henri Croset ◽  
Louis Thaler

SummaryThis paper examines the relation between chromosomal and nuclear-gene divergence in 28 wild populations of the house mouse semi-species, Mus musculus domesticus, in Western Europe and North Africa. Besides describing the karyotypes of 15 of these populations and comparing them to those of 13 populations for which such information was already known, it reports the results of an electrophoretic survey of proteins encoded by 34 nuclear loci in all 28 populations. Karyotypic variation in this taxon involves only centric (or Robertsonian) fusions which often differ in arm combination and number between chromosomal races. The electrophoretic analysis showed that the amount of genic variation within Robertsonian (Rb) populations was similar to that for all-acrocentric populations, i.e. bearing the standard karyotype. Moreover, divergence between the two types of populations was extremely low. These results imply that centric fusions in mice have not modified either the level or the nature of genic variability. The genetic similarity between Rb and all-acrocentric populations is not attributed to the persistence of gene flow, since multiple fusions cause marked reproductive isolation. Rather, we attribute this extreme similarity to the very recent origin of chromosomal races in Europe. Furthermore, genic diversity measures suggest that geographically separated Rb populations have in situ and independent origins. Thus, Rb translocations are probably not unique events, but originated repeatedly. Two models are presented to explain how the rapid fixation of a series of chromosomal rearrangements can occur in a population without lowering variability in the nuclear genes. The first model assumes that chromosomal mutation rates are between 10−3 and 10−4 and that populations underwent a series of transient bottlenecks in which the effective population size did not fall below 35. In the second model, genic variability is restored following severe bottlenecks, through gene flow and recombination.



2014 ◽  
Vol 281 (1776) ◽  
pp. 20132733 ◽  
Author(s):  
Yasmin Latour ◽  
Marco Perriat-Sanguinet ◽  
Pierre Caminade ◽  
Pierre Boursot ◽  
Carole M. Smadja ◽  
...  

Sexual selection may hinder gene flow across contact zones when hybrid recognition signals are discriminated against. We tested this hypothesis in a unimodal hybrid zone between Mus musculus musculus and Mus musculus domesticus where a pattern of reinforcement was described and lower hybrid fitness documented. We presented mice from the border of the hybrid zone with a choice between opposite sex urine from the same subspecies versus hybrids sampled in different locations across the zone. While no preference was evidenced in domesticus mice, musculus males discriminated in favour of musculus signals and against hybrid signals. Remarkably, the pattern of hybrid unattractiveness did not vary across the hybrid zone. Moreover, allopatric populations tested in the same conditions did not discriminate against hybrid signals, indicating character displacement for signal perception or preference. Finally, habituation–discrimination tests assessing similarities between signals pointed out that hybrid signals differed from the parental ones. Overall, our results suggest that perception of hybrids as unattractive has evolved in border populations of musculus after the secondary contact with domesticus . We discuss the mechanisms involved in hybrid unattractiveness, and the potential impact of asymmetric sexual selection on the hybrid zone dynamics and gene flow between the two subspecies.



2017 ◽  
Vol 122 (1) ◽  
pp. 224-240 ◽  
Author(s):  
Janice Britton-Davidian ◽  
Pierre Caminade ◽  
Eve Davidian ◽  
Marie Pagès


Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 109 ◽  
Author(s):  
Benjamin Matthew Skinner ◽  
Joanne Bacon ◽  
Claudia Cattoni Rathje ◽  
Erica Lee Larson ◽  
Emily Emiko Konishi Kopania ◽  
...  

Measurements of nuclear organization in asymmetric nuclei in 2D images have traditionally been manual. This is exemplified by attempts to measure chromosome position in sperm samples, typically by dividing the nucleus into zones, and manually scoring which zone a fluorescence in-situ hybridisation (FISH) signal lies in. This is time consuming, limiting the number of nuclei that can be analyzed, and prone to subjectivity. We have developed a new approach for automated mapping of FISH signals in asymmetric nuclei, integrated into an existing image analysis tool for nuclear morphology. Automatic landmark detection defines equivalent structural regions in each nucleus, then dynamic warping of the FISH images to a common shape allows us to generate a composite of the signal within the entire cell population. Using this approach, we mapped the positions of the sex chromosomes and two autosomes in three mouse lineages (Mus musculus domesticus, Mus musculus musculus and Mus spretus). We found that in all three, chromosomes 11 and 19 tend to interact with each other, but are shielded from interactions with the sex chromosomes. This organization is conserved across 2 million years of mouse evolution.



1988 ◽  
Vol 52 (3) ◽  
pp. 185-193 ◽  
Author(s):  
F. Vanlerberghe ◽  
P. Boursot ◽  
J. T. Nielsen ◽  
F. Bonhomme

SummaryOne hundred and ninety-eight mice trapped along a south–north transect through the Danish hybrid zone between Mus musculus domesticus and M. m. musculus were typed for mitochondrial DNA (mtDNA), the Y chromosome and ten autosomal loci encoding diagnostic proteins. The southern (domesticus) populations display two mtDNA variants (S1 and S2) and the northern (musculus) have a third mtDNA variant (N) of domesticus origin. Across the hybrid zone defined by ten autosomal loci, there is a steep dine between the southern and northern types of mtDNA. As well as confirming an earlier finding that Danish musculus all have a domesticus mtDNA (Ferris et al. 1983a, & b), our results show that this mtDNA takeover is not the result of a persistent mitochondrial gene flow between the two subspecies. While the coincident dines for the ten autosomal loci and the abrupt dine for the Y chromosome can be explained by selection, it is less likely to be the case for the mtDNA exchanges. We discuss the possible role of sex-linked migration and genetic drift to account for the distribution of the mitochondrial variants.



Mammalia ◽  
2006 ◽  
Vol 70 (1-2) ◽  
Author(s):  
Djamchid Darviche ◽  
Annie Orth ◽  
Jacques Michaux

RésuméLa présente étude porte sur la taille et la forme des dents et sur la morphologie crânienne d'individus en provenance d'Europe sud-occidentale et d'Afrique du Nord caractérisés génétiquement comme appartenant aux espèces Mus spretus et Mus musculus domesticus . Une révision des caractères diagnostiques des dents et du crâne utilisés pour la détermination de l'appartenance spécifique des spécimens a été faite. La révision porte sur 17 caractères métriques et 14 caractères morphologiques. Une application à un matériel fossile inédit d'âge pléistocène supérieur du Maroc a ensuite été tentée. La détermination de ces restes fossiles représentés par des molaires inférieures de souris du gisement de Doukkala II, près de Rabat, permet de conclure à la présence d'une souris très proche de l'actuelle M. spretus . La présence dans le Pléistocène supérieur d'une souris, différente de la souris domestique, est ainsi démontrée dans le nord de l'Afrique, l'arrivée de la souris domestique dans ce secteur restant à préciser.



2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Megan Phifer-Rixey ◽  
Bettina Harr ◽  
Jody Hey

Abstract Background The three main subspecies of house mice, Mus musculus castaneus, Mus musculus domesticus, and Mus musculus musculus, are estimated to have diverged ~ 350-500KYA. Resolution of the details of their evolutionary history is complicated by their relatively recent divergence, ongoing gene flow among the subspecies, and complex demographic histories. Previous studies have been limited to some extent by the number of loci surveyed and/or by the scope of the method used. Here, we apply a method (IMa3) that provides an estimate of a population phylogeny while allowing for complex histories of gene exchange. Results Results strongly support a topology with M. m. domesticus as sister to M. m. castaneus and M. m. musculus. In addition, we find evidence of gene flow between all pairs of subspecies, but that gene flow is most restricted from M. m. musculus into M. m. domesticus. Estimates of other key parameters are dependent on assumptions regarding generation time and mutation rate in house mice. Nevertheless, our results support previous findings that the effective population size, Ne, of M. m. castaneus is larger than that of the other two subspecies, that the three subspecies began diverging ~ 130 - 420KYA, and that the time between divergence events was short. Conclusions Joint demographic and phylogenetic analyses of genomic data provide a clearer picture of the history of divergence in house mice.



Genetics ◽  
1987 ◽  
Vol 116 (2) ◽  
pp. 313-320
Author(s):  
Gerald G Johnson ◽  
Verne M Chapman

ABSTRACT We have previously shown that mice expressing Hprt a allele(s) have erythrocyte hypoxanthine phosphoribosyltransferase (HPRT) levels that are approximately 25-fold (Mus musculus castaneus) and 70-fold (Mus spretus) higher than in mice that express the Hprt b allele (Mus musculus domesticus; C57BI/6J; C3H/HeHa), and that these differences in erythrocyte HPRT levels are due to differences in the turnover rates of the HPRT A and B proteins as reticulocytes mature to erythrocytes. We show here that: (1) the taxonomic subgroups of the genus Mus are essentially monomorphic for the occurrence of either the Hprt a or the Hprt b allele, with Hprt a being common in the aboriginal species (M. spretus, Mus hortulanus and Mus abbotti) and in several commensal species (Mus musculus musculus, M. m. castaneus, Mus musculus molossinus), while Hprt b is common in feral M. m. domesticus populations as well as in all inbred strains of mice tested; (2) in all these diverse Mus subgroups there is a strict association of Hprt a with high and Hprt b with low levels of erythrocyte HPRT; and, (3) the association between the occurrence of the Hprt a allele and elevated erythrocyte HPRT levels is retained following repeated backcrosses of wild-derived Hprt a allele(s) into the genetic background of inbred strains of mice with the Hprt b allele. Collectively, these observations indicate that the elevated and low levels of erythrocyte HPRT are specified by differences in the Hprt a and b structural genes. Since evidence indicates that Hprt a and b encode HPRT proteins which differ in primary structure, we infer that the structure of HPRT is an important factor in determining its sensitivity to turnover in mouse erythroid cells. Hprt a and b may provide a useful system of "normal" allelic gene products for identifying factors that participate in protein turnover during mouse reticulocyte maturation.





Sign in / Sign up

Export Citation Format

Share Document