Electric-field mediated nickel-induced nanocrystallization of amorphous silicon thin films in the complete absence of external heating

2009 ◽  
Vol 98 (2) ◽  
pp. 473-479 ◽  
Author(s):  
Prashant Kumar
2001 ◽  
Vol 664 ◽  
Author(s):  
Marek A. T. Izmajlowicz ◽  
Neil A. Morrison ◽  
Andrew J. Flewitt ◽  
William I. Milne

ABSTRACTFor application to active matrix liquid crystal displays (AMLCDs), a low temperature (< 600 °C) process for the production of polycrystalline silicon is required to permit the use of inexpensive glass substrates. This would allow the integration of drive electronics onto the display panel. Current low temperature processes include excimer laser annealing, which requires expensive equipment, and solid phase crystallization, which requires high temperatures. It is known that by adding small amounts of metals such as nickel to the amorphous silicon the solid phase crystallization temperature can be significantly reduced. The rate of this solid phase metal induced crystallization is increased in the presence of an electric field. Previous work on field aided crystallization has reported crystal growth that either proceeds towards the positive terminal or is independent of the direction of the electric field. In this work, extensive investigation has consistently revealed directional crystallization, from the positive to the negative terminal, of amorphous silicon thin films during heat treatment in the presence of an electric field. This is the first time that this phenomenon has been reported. Models have been proposed for metal induced crystallization with and without an applied electric field in which a reaction between Ni and Si to produce NiSi is the rate-limiting step. The crystallization rate is increased in the presence of an electric field through the drift of positive Ni ions.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Lukas Terkowski ◽  
Iain W. Martin ◽  
Daniel Axmann ◽  
Malte Behrendsen ◽  
Felix Pein ◽  
...  

2020 ◽  
Vol 984 ◽  
pp. 91-96
Author(s):  
Cheng Liu ◽  
Yu Hao Song ◽  
Dong Yang Li ◽  
Wei Li

The structural and optical properties of amorphous silicon (a-Si) and Al-dispersed amorphous silicon (a-Si:Al) thin films irradiated by femtosecond (fs) laser at various energy densities are investigated comparatively in this article. It is found that there is an uneven crystallization in both amorphous thin films by means of optical microscopy and laser Raman spectroscopy respectively. The crystallization in each pulse spot area is gradually weakened from the center to the edge along with the energy dispersion of laser irradiation. The laser induced crystallization in a-Si thin films begins early and develops more extensively compared to that in a-Si:Al thin films, and Al nanoparticles inhibit somehow the crystallization of a-Si in a-Si:Al thin films.


2014 ◽  
Vol 1666 ◽  
Author(s):  
Tomohiko Nakamura ◽  
Shinya Yoshidomi ◽  
Masahiko Hasumi ◽  
Toshiyuki Sameshima ◽  
Tomohisa Mizuno

ABSTRACTWe report crystallization of amorphous silicon (a-Si) thin films and improvement of thin film transistors (TFTs) characteristics using 2.45 GHz microwave heating assisted with carbon powders. Undoped 50-nm-thick a-Si films were formed on quartz substrates and heated by microwave irradiation for 2, 3, and 4 min. Raman scattering spectra revealed that the crystalline volume ratio increased to 0.42 for the 4-min heated sample. The dark and photo electrical conductivities measured by Air mass 1.5 at 100 mW/cm2 were 2.6x10-6 and 5.2x10-6 S/cm in the case of 4-min microwave heating followed by 1.3x106-Pa-H2O vapor heat treatment at 260°C for 3 h. N channel polycrystalline silicon TFTs characteristics were improved by the combination of microwave heating with high-pressure H2O vapor heat treatment. The threshold voltage decreased from 5.3 to 4.2 V and the effective carrier mobility increased from 18 to 25 cm2/Vs.


Sign in / Sign up

Export Citation Format

Share Document