Studies on improved hole injection into N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine hole transport layer in the device by thermal annealing of indium tin oxide anode

2017 ◽  
Vol 123 (3) ◽  
Author(s):  
Gnyaneshwar Dasi ◽  
K. Asokan ◽  
Kuppusamy Thangaraju
2009 ◽  
Vol 1154 ◽  
Author(s):  
Toshinori Matsushima ◽  
Guang-He Jin ◽  
Yoshihiro Kanai ◽  
Tomoyuki Yokota ◽  
Seiki Kitada ◽  
...  

AbstractWe have shown that hole mobilities of a wide variety of organic thin films can be estimated using a steady-state space-charge-limited current (SCLC) technique due to formation of Ohmic hole injection by introducing a very thin hole-injection layer of molybdenum oxide (MoO3) between an indium tin oxide anode layer and an organic hole-transport layer. Organic hole-transport materials used to estimate hole mobilities are 4,4′,4″-tris(N-3-methylphenyl-N-phenyl-amino)triphenylamine (m-MTDATA), 4,4′,4″-tris(N-2-naphthyl-N-phenyl-amino)triphenylamine (2-TNATA), rubrene, N,N′-di(m-tolyl)-N,N′-diphenylbenzidine (TPD), and N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (α-NPD). These materials are found to have electric-field-dependent hole mobilities. While field dependence parameters (β) estimated from SCLCs are almost similar to those estimated using a widely used time-of-flight (TOF) technique, zero field SCLC mobilities (μ0) are about one order of magnitude lower than zero field TOF mobilities.


2016 ◽  
Vol 616 ◽  
pp. 419-424 ◽  
Author(s):  
Tina Wahl ◽  
Sabrina Zellmer ◽  
Jonas Hanisch ◽  
Georg Garnweitner ◽  
Erik Ahlswede

MRS Advances ◽  
2016 ◽  
Vol 1 (4) ◽  
pp. 305-310 ◽  
Author(s):  
R. Vasan ◽  
H. Salman ◽  
M. O. Manasreh

ABSTRACTAll inorganic quantum dot light emitting devices with solution processed transport layers are investigated. The device consists of an anode, a hole transport layer, a quantum dot emissive layer, an electron transport layer and a cathode. Indium tin oxide coated glass slides are used as substrates with the indium tin oxide acting as the transparent anode electrode. The transport layers are both inorganic, which are relatively insensitive to moisture and other environmental factors as compared to their organic counterparts. Nickel oxide acts as the hole transport layer, while zinc oxide nanocrystals act as the electron transport layer. The nickel oxide hole transport layer is formed by annealing a spin coated layer of nickel hydroxide sol-gel. On top of the hole transport layer, CdSe/ZnS quantum dots synthesized by hot injection method is spin coated. Finally, zinc oxide nanocrystals, dispersed in methanol, are spin coated over the quantum dot emissive layer as the electron transport layer. The material characterization of different layers is performed by using absorbance, Raman scattering, XRD, and photoluminescence measurements. The completed device performance is evaluated by measuring the IV characteristics, electroluminescence and quantum efficiency measurements. The device turn on is around 4V with a maximum current density of ∼200 mA/cm2 at 9 V.


2013 ◽  
Vol E96.C (3) ◽  
pp. 365-368 ◽  
Author(s):  
Seong-Ho KIM ◽  
Hanae OHTSUKA ◽  
Rigoberto C. ADVINCULA ◽  
Kuniaki TANAKA ◽  
Hiroaki USUI

1999 ◽  
Vol 558 ◽  
Author(s):  
J. S. Kim ◽  
R. H. Friend ◽  
F. Cacialli

ABSTRACTWe studied the influence of various surface treatments of indium-tin oxide anodes on the operational stability of high-efficiency green-emitting polymer light-emitting diodes, fabilicated with a doped poly(3,4-ethylene dioxythiophene) PEDOT hole transport layer, a polyfluorene-based emissive layer, and Ca-Al cathodes. The anodes were modified by physical (oxygen-plasma), chemical (aquaregia), or combined treatments. Oxygen-plasma improves the stability under constant current over all the other anodes, with half-brightness lifetimes (initial brightness, 200 cd/m2) two to five times longer than for untreated samples, and 1000 times longer than for aquaregia ones. We derive two major indications for optimisation of PLEDs. First, thermal management of the diode is of the uppermost importance. Second, the ITO anode and in general the electrical properties of the hole-injecting contact are crucial to device operation, even in the presence of a hole transport layer.


2019 ◽  
Author(s):  
Mohammad Rahmati ◽  
Majid Pahlevani ◽  
Gregory Welch

<p>Flexible red OLEDs based on a quadruple layer stack in-between electrodes with 160 mm<sup>2</sup> active area were fabricated in ambient air on PET via slot-die coating. For the OLED structure PET/ITO/PEDOT:PSS/PVK/PFO:tPDI<sub>2</sub>N-EH/ZnO/Ag the ink formulations and coating parameters for each layer were systematically evaluated and optimized. The air-stable red-light emitting material tPDI<sub>2</sub>N-EH was successfully utilized as blended homogeneous film with PFO for the emitting layer. The use of an organic hole-transport layer (PVK) and inorganic electron injection layer (ZnO) significantly improved the brightness of the reference device from 4 cd/m<sup>2</sup> to 303 cd/m<sup>2</sup>. Surface analysis using AFM measurements showed that PVK interlayer reduced the surface roughness of the hole injection layer (PEDT:PSS) from 0.45 nm to 0.17 nm, which improved the ability to form uniform emitting layers on top. In addition, the ZnO interlayer improved the average roughness of the device from 1.26 nm to 0.85 nm and reduced the turn-on voltage of the device from 5.0 V to 2.8 V.</p>


2019 ◽  
Author(s):  
Mohammad Rahmati ◽  
Majid Pahlevani ◽  
Gregory Welch

<p>Flexible red OLEDs based on a quadruple layer stack in-between electrodes with 160 mm<sup>2</sup> active area were fabricated in ambient air on PET via slot-die coating. For the OLED structure PET/ITO/PEDOT:PSS/PVK/PFO:tPDI<sub>2</sub>N-EH/ZnO/Ag the ink formulations and coating parameters for each layer were systematically evaluated and optimized. The air-stable red-light emitting material tPDI<sub>2</sub>N-EH was successfully utilized as blended homogeneous film with PFO for the emitting layer. The use of an organic hole-transport layer (PVK) and inorganic electron injection layer (ZnO) significantly improved the brightness of the reference device from 4 cd/m<sup>2</sup> to 303 cd/m<sup>2</sup>. Surface analysis using AFM measurements showed that PVK interlayer reduced the surface roughness of the hole injection layer (PEDT:PSS) from 0.45 nm to 0.17 nm, which improved the ability to form uniform emitting layers on top. In addition, the ZnO interlayer improved the average roughness of the device from 1.26 nm to 0.85 nm and reduced the turn-on voltage of the device from 5.0 V to 2.8 V.</p>


Sign in / Sign up

Export Citation Format

Share Document