Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material

2018 ◽  
Vol 124 (5) ◽  
Author(s):  
Nasrin Beheshtkhoo ◽  
Mohammad Amin Jadidi Kouhbanani ◽  
Amir Savardashtaki ◽  
Ali Mohammad Amani ◽  
Saeed Taghizadeh
2017 ◽  
Vol 39 (22) ◽  
pp. 2926-2936 ◽  
Author(s):  
Carole Silveira ◽  
Quelen Letícia Shimabuku ◽  
Marcela Fernandes Silva ◽  
Rosângela Bergamasco

2020 ◽  
Vol 17 ◽  
pp. 100280 ◽  
Author(s):  
J. Amin Ahmed Abdullah ◽  
Laouini Salah Eddine ◽  
Bouafia Abderrhmane ◽  
M. Alonso-González ◽  
A. Guerrero ◽  
...  

Author(s):  
BEENA JOSE ◽  
FEMY THOMAS

Objective: The objective of the present study is the synthesis of iron oxide nanoparticles using Annona muricata aqueous leaf extract, characterization of the synthesized nanoparticles and evaluation of the antibacterial, photocatalytic activity and cytotoxicity. Methods: The iron oxide nanoparticle was synthesized using Annona muricata aqueous leaf extract and the crystal structure of the iron oxide nanoparticle was determined by UV-Visible spectroscopy, Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The in vitro cytotoxicity of iron oxide nanoparticles was evaluated using Dalton’s lymphoma ascites cells and the antibacterial assay was conducted using agar well diffusion method. Results: The UV-Visible spectrum of iron oxide nanoparticle showed a maximum absorption peak at 265 nm. This is the XRD pattern of iron oxide nanoparticles exhibited a distinct peak at 26.029 (2θ), accounting for crystal plane (211). SEM images revealed that the synthesized iron oxide nanoparticles were aggregated as irregular sphere shapes with rough surfaces. TEM image reveals the size of the synthesized iron oxide nanoparticles are spherical in shape with an average size of 20 nm. Green synthesized iron oxide nanoparticles using Annona muricata leaf extract effectively degraded methylene blue dye. Conclusion: This study showed that the synthesized iron oxide nanoparticles using Annona muricata aqueous leaf extract exhibited pronounced antibacterial, anticancer and photocatatytic activity and can be used in the textile industry for the purification of water contaminated with carcinogenic textile dyes. It can also be used as an external antiseptic in the prevention and treatment of bacterial infections.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Gowrimanohar N ◽  
Rosemary Michael

In recent years, nanotechnology has emerged as a start-of-the-art, with multifarious applications in a wide array of fields. Studies on green synthesis of nanoparticles moves forward these days. The present work involves the green method of synthesizing Iron oxide nanoparticles [Fe2O3] by Phyllanthus Niruri leaf extract and NaOH which acts as a precipitating agent. Furthermore, the green synthesized Iron oxide nanoparticles were characterized and its antibacterial activity was investigated. As this plant extract is more beneficial, it is energy efficient, low cost and environmentally friendly process than the biohazardous chemical synthesis. Iron oxide nano particles are gaining importance for their uses in environmental remediation technologies. The characterization of nano particles includes the IR, UV-Vis, and Size determination using SEM and XRD. The average crystalline size of the iron oxide nanoparticles was calculated by Debye’s Scherrer formula,d = 12.34nm. The analytical studies revealed that the synthesized Iron oxide nanoparticles almost have the identical size and morphology. Thus, the above studies concluded, the synthesized material was Iron oxide nanoparticles.


2021 ◽  
Vol 12 (2) ◽  
pp. 2108-2116 ◽  

In every day, new nanoparticles have been synthesized, and their properties have been evaluated since their unique physical and chemical properties, which are very different from the precursors. Nanoscience also has significant advances in obtaining environmentally friendly and sustainable products. Iron oxide nanoparticles, one of the metal oxide nanoparticles, have different forms and properties. In recent years, iron oxide nanoparticles have been successfully synthesized from various plant species using green synthesis pathways and have been analyzed for different bioactivity properties. In this study, iron oxide nanoparticles were synthesized using a completely non-hazardous method using Ficus carica leaf extract. The synthesized product was characterized by SEM, EDX, XRD crystallography, FT-IR, and UV-Vis spectroscopy. Characterization methods have shown that the product was synthesized in mixed form with 43-57 nm size. In addition, the antioxidant activity of the product was analyzed, and it was recorded that the nanoparticle has remarkable antioxidant activity.


Sign in / Sign up

Export Citation Format

Share Document