A comparison of NO2 sensing characteristics of α- and γ-iron oxide-based solid-state gas sensors

2020 ◽  
Vol 126 (10) ◽  
Author(s):  
M. Hjiri ◽  
N. Zahmouli ◽  
K. Khouzami ◽  
L. El Mir ◽  
M. S. Aida ◽  
...  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gerhard Pfaff

AbstractNatural and synthetic iron oxide pigments are by far the most important colored pigments. Their high importance is based on the variety of stable colors ranging from yellow via orange, red and brown to black. Iron oxide yellow (α-FeOOH), iron oxide red (α-Fe2O3) and iron oxide black (Fe3O4) are the most important representatives of the iron oxide pigments. Synthetic iron oxide pigments are produced industrially on a large scale by solid-state processes, precipitation processes and by the Laux process. Main advantages of synthetic iron oxide pigments compared with natural types are their pure hue, the consistent, reproducible quality and their tinting strength. Iron oxide pigments are mainly used in construction materials, paints, coatings, and plastics, but also in cosmetics, pharmaceuticals and special applications such as ceramics, magnetic coatings and toners.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 400
Author(s):  
Van Cuong Nguyen ◽  
Kwangeun Kim ◽  
Hyungtak Kim

We investigated the sensing characteristics of NO2 gas sensors based on Pd-AlGaN/GaN high electron mobility transistors (HEMTs) at high temperatures. In this paper, we demonstrated the optimization of the sensing performance by the gate bias, which exhibited the advantage of the FET-type sensors compared to the diode-type ones. When the sensor was biased near the threshold voltage, the electron density in the channel showed a relatively larger change with a response to the gas exposure and demonstrated a significant improvement in the sensitivity. At 300 °C under 100 ppm concentration, the sensor’s sensitivities were 26.7% and 91.6%, while the response times were 32 and 9 s at VG = 0 V and VG = −1 V, respectively. The sensor demonstrated the stable repeatability regardless of the gate voltage at a high temperature.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2103 ◽  
Author(s):  
Tae-Hee Han ◽  
So-Young Bak ◽  
Sangwoo Kim ◽  
Se Hyeong Lee ◽  
Ye-Ji Han ◽  
...  

This paper introduces a method for improving the sensitivity to NO2 gas of a p-type metal oxide semiconductor gas sensor. The gas sensor was fabricated using CuO nanowires (NWs) grown through thermal oxidation and decorated with ZnO nanoparticles (NPs) using a sol-gel method. The CuO gas sensor with a ZnO heterojunction exhibited better sensitivity to NO2 gas than the pristine CuO gas sensor. The heterojunction in CuO/ZnO gas sensors caused a decrease in the width of the hole accumulation layer (HAL) and an increase in the initial resistance. The possibility to influence the width of the HAL helped improve the NO2 sensing characteristics of the gas sensor. The growth morphology, atomic composition, and crystal structure of the gas sensors were analyzed using field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy, and X-ray diffraction, respectively.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
R. Alexandrescu ◽  
I. Morjan ◽  
A. Tomescu ◽  
C. E. Simion ◽  
M. Scarisoreanu ◽  
...  

Iron/iron oxide-based nanocomposites were prepared by IR laser sensitized pyrolysis ofFe(CO)5and methyl methacrylate (MMA) mixtures. The morphology of nanopowder analyzed by TEM indicated that mainly core-shell structures were obtained. X-ray diffraction techniques evidence the cores as formed mainly by iron/iron oxide crystalline phases. A partially degraded (carbonized) polymeric matrix is suggested for the coverage of the metallic particles. The nanocomposite structure at the variation of the laser density and of the MMA flow was studied. The new materials prepared as thick films were tested for their potential for acting as gas sensors. The temporal variation of the electrical resistance in presence ofNO2, CO, andCO2, in dry and humid air was recorded. Preliminary results show that the samples obtained at higher laser power density exhibit rather high sensitivity towardsNO2detection andNO2selectivity relatively to CO andCO2. An optimum working temperature of200°Cwas found.


2000 ◽  
Vol 407 (1-2) ◽  
pp. 23-39 ◽  
Author(s):  
John-Erik Haugen ◽  
Oliver Tomic ◽  
Knut Kvaal

2022 ◽  
Author(s):  
Jonas Mahlknecht ◽  
Günter Wuzella ◽  
Herfried Lammer ◽  
Mohammed Khalifa

Herein, surfactant-assisted PANI nanorods was synthesized via the solid-state synthesis method at different concentrations of sodium lauryl sulfate (SLS). Upon the addition of SLS, the average rod diameter of PANI...


Author(s):  
Nguyen Viet Long ◽  
Toshiharu Teranishi ◽  
Yong Yang ◽  
Cao Minh Thi ◽  
Yanqin Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document