Investigation on how spectral overlap between donor–acceptor affects PRET

2021 ◽  
Vol 127 (12) ◽  
Author(s):  
Hongwei Ding ◽  
Xinyi Lin ◽  
Xiaojun Liu
1980 ◽  
Vol 41 (7) ◽  
pp. 707-712 ◽  
Author(s):  
A. Poure ◽  
G. Aguero ◽  
G. Masse ◽  
J.P. Aicardi

2008 ◽  
Author(s):  
Derck Schlettwein ◽  
Robin Knecht ◽  
Dominik Klaus ◽  
Christopher Keil ◽  
Günter Schnurpfeil

1989 ◽  
Vol 162 ◽  
Author(s):  
J. A. Freitas ◽  
S. G. Bishop

ABSTRACTThe temperature and excitation intensity dependence of photoluminescence (PL) spectra have been studied in thin films of SiC grown by chemical vapor deposition on Si (100) substrates. The low power PL spectra from all samples exhibited a donor-acceptor pair PL band which involves a previously undetected deep acceptor whose binding energy is approximately 470 meV. This deep acceptor is found in every sample studied independent of growth reactor, suggesting the possibility that this background acceptor is at least partially responsible for the high compensation observed in Hall effect studies of undoped films of cubic SiC.


2003 ◽  
Vol 773 ◽  
Author(s):  
Aaron R. Clapp ◽  
Igor L. Medintz ◽  
J. Matthew Mauro ◽  
Hedi Mattoussi

AbstractLuminescent CdSe-ZnS core-shell quantum dot (QD) bioconjugates were used as energy donors in fluorescent resonance energy transfer (FRET) binding assays. The QDs were coated with saturating amounts of genetically engineered maltose binding protein (MBP) using a noncovalent immobilization process, and Cy3 organic dyes covalently attached at a specific sequence to MBP were used as energy acceptor molecules. Energy transfer efficiency was measured as a function of the MBP-Cy3/QD molar ratio for two different donor fluorescence emissions (different QD core sizes). Apparent donor-acceptor distances were determined from these FRET studies, and the measured distances are consistent with QD-protein conjugate dimensions previously determined from structural studies.


Sign in / Sign up

Export Citation Format

Share Document