scholarly journals RNA-Seq Reveals the Effect of Ethylene on the Volatile Organic Components (VOCs) of Cavendish Banana at Different Post-harvesting Stages

Author(s):  
Tongxin Dou ◽  
Chunhua Hu ◽  
Shujing Zhao ◽  
Huijun Gao ◽  
Weidi He ◽  
...  

AbstractAroma serves as one of the decisive factors influencing the value of banana commodities. Most of characteristic volatile organic components (VOCs) are formed during post-harvesting. However, the changing of VOCs of banana at different post-harvesting stages remain ambiguous. In this study, the VOCs of Cavendish banana for the four typical post-harvesting stages (green stage/half of yellow stage/yellow ripening stage/over ripening stage) are clarified using headspace solid phase micro-extraction (HS-SPME), combined with gas chromatography-mass spectrometry (GC–MS). The results inferred that the relative content of branched-chain esters such as acetate and butyrate, which form the main contributors of aroma in bananas, is higher in the T2 and T3 stages. Further, RNA-Seq technology was employed to clarify the formation mechanism of banana aroma in the post-harvesting stage. The MaTGL4 gene of the linoleic acid metabolism pathway and the MaBCAT3 and MaBCAT5 genes of the valine, leucine and isoleucine degradation pathway in banana suggest the expression is active late in the ripening stage, and the upregulated expression of these genes is analogous to the formation of aroma components such as branched-chain esters and hexenal. The above results not only provide baseline data on the differences in physical and chemical properties of VOCs in various post-harvesting stages of banana production, but also provide theoretical guidance facilitating the subsequent improvement of the commercial value of bananas through genetic improvement.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3341
Author(s):  
Alessandra Frau ◽  
Lauren Lett ◽  
Rachael Slater ◽  
Gregory R. Young ◽  
Christopher J. Stewart ◽  
...  

The fecal metabolome in early life has seldom been studied. We investigated its evolution in pre-term babies during their first weeks of life. Multiple (n = 152) stool samples were studied from 51 babies, all <32 weeks gestation. Volatile organic compounds (VOCs) were analyzed by headspace solid phase microextraction gas chromatography mass spectrometry. Data were interpreted using Automated Mass Spectral Deconvolution System (AMDIS) with the National Institute of Standards and Technology (NIST) reference library. Statistical analysis was based on linear mixed modelling, the number of VOCs increased over time; a rise was mainly observed between day 5 and day 10. The shift at day 5 was associated with products of branched-chain fatty acids. Prior to this, the metabolome was dominated by aldehydes and acetic acid. Caesarean delivery showed a modest association with molecules of fungal origin. This study shows how the metabolome changes in early life in pre-term babies. The shift in the metabolome 5 days after delivery coincides with the establishment of enteral feeding and the transition from meconium to feces. Great diversity of metabolites was associated with being fed greater volumes of milk.


2009 ◽  
Vol 4 (12) ◽  
pp. 1934578X0900401 ◽  
Author(s):  
Marisa Piovano ◽  
Juan A. Garbarino ◽  
Elizabeth Sánchez ◽  
Manuel E. Young

The compounds responsible for the characteristic odor of eight fresh non-edible Basidiomycetes fungi were evaluated. The volatile organic compounds from the fresh samples present in the headspace of a sealed vial were determined by solid-phase microextraction gas chromatography-mass spectrometry, using a PDMS/DVB fiber. A total of twenty-eight components were identified, the most frequent being 1-octen-3-ol and 3-octanone.


Author(s):  
Antonia Flores ◽  
Silvia Sorolla ◽  
Concepció Casas ◽  
Rosa Cuadros ◽  
Anna Bacardit

Volatile organic compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) arise from the chemicals used in the various stages of the leather manufacturing process. An important aim of the tanning industry is to minimize or eliminate VOCs and SVOCs, without lowering the quality of leather.   This paper shows the development of a new headspace-solid phase micro extraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC-MS) method for the identification of VOCs and SVOCs emitted by newly designed polymers for the leather finishing operation. These new polymers are polyurethane resins designed to reduce the VOC and SVOC concentration. This method enables a simple and fast determination of the qualitative and semi-quantitative content of VOCs and SVOCs in polyurethane-type finishing resins. The chemicals that are of concern in this paper are the following: Dipropylene glycol Monomethyl Ether (DPGME), DBE-3 (a mixture of dibasic esters) and Triethylamine (TEA). The test conditions that have been determined to carry out the HS-SPME assay are the following: incubation time (2 hours), extraction temperature and time (40°C; 5 minutes) and the desorption conditions (280°C, 50 seconds).  Ten samples of laboratory scale resins were tested by HS-SPME followed by gas chromatography (GC-MS). DPGME and DBE-3 (a mixture of dimethyl adipate, dimethyl glutarate and dimethyl succinate) have been identified effectively. The compounds are identified by a quantitative method using external calibration curves for the target compounds. The technique is not effective to determine the TEA compound, since the chromatograms shown poor resolution peaks for the standard. 


Separations ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 64
Author(s):  
Ryan Thompson ◽  
John D. Perry ◽  
Stephen P. Stanforth ◽  
John R. Dean

Development of a rapid approach for universal microbial detection is required in the healthcare, food and environmental sectors to aid with medical intervention, food safety and environmental protection. This research investigates the use of enzymatic hydrolysis of a substrate by a microorganism to generate a volatile organic compound (VOC). One such enzyme activity that can be used in this context is nitroreductase as such activity is prevalent across a range of microorganisms. A study was developed to evaluate a panel of 51 microorganisms of clinical interest for their nitroreductase activity. Two enzyme substrates, nitrobenzene and 1-fluoro-2-nitrobenzene, were evaluated for this purpose with evolution, after incubation, of the VOCs aniline and 2-fluoroaniline, respectively. Detection of the VOCs was done using headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) with obtained limits of quantitation (LOQ) of 0.17 and 0.03 µg/mL for aniline and 2-fluoroaniline, respectively. The results indicated that both enzyme substrates were reduced by the same 84.3% of microorganisms producing the corresponding volatile anilines which were detected using HS-SPME-GC-MS. It was found that nitroreductase activity could be detected after 6–8 h of incubation for the selected pathogenic bacteria investigated. This approach shows promise as a rapid universal microbial detection system.


Sign in / Sign up

Export Citation Format

Share Document