scholarly journals Scale effects in subaerial landslide generated impulse waves

2007 ◽  
Vol 44 (5) ◽  
pp. 691-703 ◽  
Author(s):  
Valentin Heller ◽  
Willi H. Hager ◽  
Hans-Erwin Minor
2018 ◽  
Vol 19 (1) ◽  
pp. 203-230 ◽  
Author(s):  
Hongcheng Xue ◽  
Qian Ma ◽  
Mingjun Diao ◽  
Lei Jiang

2018 ◽  
Vol 12 (02) ◽  
pp. 1840002 ◽  
Author(s):  
Markus Brühl ◽  
Matthias Becker

Subaerial and underwater landslides, rock falls and glacier calvings can generate impulse waves in lakes, fjords and the open sea. Experiments with subaerial landslides have shown that, depending on the slide characteristics, different wave types (Stokes, cnoidal or bore-like waves) are generated. Each of these wave types shows different wave height decay with increasing distance from the impact position. Furthermore, in very shallow water, the first impulse wave shows characteristic properties of a solitary wave. The nonlinear Fourier transform based on the Korteweg–deVries equation (KdV-NLFT) is a frequency-domain analysis method that decomposes shallow-water free-surface data into nonlinear cnoidal waves instead of linear sinusoidal waves. This method explicitly identifies solitons as spectral components within the given data. In this study, we apply the KdV-NLFT for the very first time to available 2D and 3D landslide-test data. The objective of the nonlinear decomposition is to identify the hidden nonlinear spectral structure of the impulse waves, including solitons. Furthermore, we analyze the determined solitons at different downstream positions from the impact point with respect to soliton propagation and modification. Finally, we draw conclusions for the prediction of the expected landslide-generated downstream solitons in the far-field.


2018 ◽  
Vol 84 (12) ◽  
pp. 68-72
Author(s):  
A. B. Maksimov ◽  
I. P. Shevchenko ◽  
I. S. Erokhina

A method for separating the work of impact into two parts - the work of the crack nucleation and that of crack growth - which consists in testing two samples with the same stress concentrators and different cross-sectional dimensions at the notch site is developed. It is assumed that the work of crack nucleation is proportional to the width of the sample face on which the crack originates and the specific energy of crack formation, whereas the work of the crack growth is proportional to the length of crack development and the specific crack growth energy. In case of the sample fracture upon testing, the crack growth length is assumed equal to the sample width. Data on the work of fracture of two samples and their geometrical dimensions at the site of the notch are used to form a system of two linear equations in two unknowns, i.e., the specific energy of crack formation and specific energy of crack growth. The determined specific energy values are then used to calculate the work of crack nucleation and work of crack growth. The use of the analytical method improves the accuracy compared to graphical - extrapolative procedures. The novelty of the method consists in using one and the same form of the notch in test samples, thus providing the same conditions of the stress-strain state for crack nucleation and growth. Moreover, specimens with different cross-section dimensions are used to eliminate the scale effects. Since the specific energy of the crack nu-cleation and specific energy of the crack growth are independent of the scale factor, they are determined only by the properties of the metal. Introduction the specific energy of crack formation and growth makes possible to assign a specific physical meaning to the fracture energy.


2014 ◽  
Vol 907 ◽  
pp. 139-149 ◽  
Author(s):  
Eckart Uhlmann ◽  
Florian Heitmüller

In gas turbines and turbo jet engines, high performance materials such as nickel-based alloys are widely used for blades and vanes. In the case of repair, finishing of complex turbine blades made of high performance materials is carried out predominantly manually. The repair process is therefore quite time consuming. And the costs of presently available repair strategies, especially for integrated parts, are high, due to the individual process planning and great amount of manually performed work steps. Moreover, there are severe risks of partial damage during manually conducted repair. All that leads to the fact that economy of scale effects remain widely unused for repair tasks, although the piece number of components to be repaired is increasing significantly. In the future, a persistent automation of the repair process chain should be achieved by developing adaptive robot assisted finishing strategies. The goal of this research is to use the automation potential for repair tasks by developing a technology that enables industrial robots to re-contour turbine blades via force controlled belt grinding.


2021 ◽  
Vol 18 (5) ◽  
pp. 1159-1176
Author(s):  
Ting Cao ◽  
Ping-yi Wang ◽  
Zhen-feng Qiu ◽  
Jing-xuan Ren
Keyword(s):  

2021 ◽  
Vol 173 ◽  
pp. 105709
Author(s):  
Ying Mao ◽  
Yilin Liu ◽  
La Zhuo ◽  
Wei Wang ◽  
Meng Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document