Both seawater acclimation and environmental ammonia exposure lead to increases in mRNA expression and protein abundance of Na+:K+:2Cl− cotransporter in the gills of the climbing perch, Anabas testudineus

2011 ◽  
Vol 182 (4) ◽  
pp. 491-506 ◽  
Author(s):  
Ai M. Loong ◽  
Shit F. Chew ◽  
Wai P. Wong ◽  
Siew H. Lam ◽  
Yuen K. Ip
2012 ◽  
Vol 303 (1) ◽  
pp. R112-R125 ◽  
Author(s):  
Yuen K. Ip ◽  
Ai M. Loong ◽  
Jie S. Kuah ◽  
Eugene W. L. Sim ◽  
Xiu L. Chen ◽  
...  

Three Na+-K+-ATPase ( nka) α-subunit isoforms, nka α1a, nka α1b, and nka α1c, were identified from gills of the freshwater climbing perch Anabas testudineus. The cDNA sequences of nka α1a and nka α1b consisted of 3,069 bp, coding for 1,023 amino acids, whereas nka α1c was shorter by 22 nucleotides at the 5′ end. In freshwater, the quantity of nka α1c mRNA transcripts present in the gills was the highest followed by nka α1a and nka α1b that was almost undetectable. The mRNA expression of nka α1a was downregulated in the gills of fish acclimated to seawater, indicating that it could be involved in branchial Na+ absorption in a hypoosmotic environment. By contrast, seawater acclimation led to an upregulation of the mRNA expression of nka α1b and to a lesser extent nka α1c, indicating that they could be essential for ion secretion in a hyperosmotic environment. More importantly, ammonia exposure led to a significant upregulation of the mRNA expression of nka α1c, which might be involved in active ammonia excretion. Both seawater acclimation and ammonia exposure led to significant increases in the protein abundance and changes in the kinetic properties of branchial Na+-K+-ATPase (Nka), but they involved two different types of Nka-immunoreactive cells. Since there was a decrease in the effectiveness of NH4+ to substitute for K+ to activate branchial Nka from fish exposed to ammonia, Nka probably functioned to remove excess Na+ and to transport K+ instead of NH4+ into the cell to maintain intracellular Na+ and K+ homeostasis during active ammonia excretion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abhishek Mazumder ◽  
Hrishikesh Choudhury ◽  
Abhinit Dey ◽  
Dandadhar Sarma

AbstractDiseased Anabas testudineus exhibiting signs of tail-rot and ulcerations on body were collected from a fish farm in Assam, India during the winter season (November 2018 to January 2019). Swabs from the infected body parts were streaked on sterilized nutrient agar. Two dominant bacterial colonies were obtained, which were then isolated and labelled as AM-31 and AM-05. Standard biochemical characterisation and 16S rRNA and rpoB gene sequencing identified AM-31 isolate as Aeromonas hydrophila and AM-05 as Aeromonas jandaei. Symptoms similar to that of natural infection were observed on re-infecting both bacteria to disease-free A. testudineus, which confirmed their virulence. LC50 was determined at 1.3 × 104 (A. hydrophila) and 2.5 × 104 (A. jandaei) CFU per fish in intraperitoneal injection. Further, PCR amplification of specific genes responsible for virulence (aerolysin and enterotoxin) confirmed pathogenicity of both bacteria. Histopathology of kidney and liver in the experimentally-infected fishes revealed haemorrhage, tubular degeneration and vacuolation. Antibiotic profiles were also assessed for both bacteria. To the best of our knowledge, the present work is a first report on the mortality of farmed climbing perch naturally-infected by A. hydrophila as well as A. jandaei, with no records of pathogenicity of the latter in this fish.


Sign in / Sign up

Export Citation Format

Share Document