An efficient computational model for vibration behavior of a functionally graded sandwich plate in a hygrothermal environment with viscoelastic foundation effects

Author(s):  
Mohamad W. Zaitoun ◽  
Abdelbaki Chikh ◽  
Abdelouahed Tounsi ◽  
Alfarabi Sharif ◽  
Mohammed A. Al-Osta ◽  
...  
2012 ◽  
Vol 28 (3) ◽  
pp. 439-452 ◽  
Author(s):  
A. M. Zenkour ◽  
M. Sobhy

AbstractThis paper deals with the static response of simply supported functionally graded material (FGM) viscoelastic sandwich plates subjected to transverse uniform loads. The FG sandwich plates are considered to be resting on Pasternak's elastic foundations. The sandwich plate is assumed to consist of a fully elastic core sandwiched by elastic-viscoelastic FGM layers. Material properties are graded according to a power-law variation from the interfaces to the faces of the plate. The equilibrium equations of the FG sandwich plate are given based on a trigonometric shear deformation plate theory. Using Illyushin's method, the governing equations of the viscoelastic sandwich plate can be solved. Parametric study on the bending analysis of FG sandwich plates is being investigated. These parameters include (i) power-law index, (ii) plate aspect ratio, (iii) side-to-thickness ratio, (iv) loading type, (v) foundation stiffnesses, and (vi) time parameter.


Author(s):  
Hamid Reza Talebi Amanieh ◽  
Seyed Alireza Seyed Roknizadeh ◽  
Arash Reza

In this paper, the nonlinear vibrational behavior of a sandwich plate with embedded viscoelastic material is studied through the use of constitutive equations with fractional derivatives. The studied sandwich structure is consisted of a viscoelastic core that is located between the faces of functionally graded magneto-electro-elastic (FG-MEE). In order to determine the frequency-dependent feature of the viscoelastic layer, four-parameter fractional derivative model is utilized. The material properties of FG-MEE face sheets have been distributed considering the power law scheme along the thickness. In addition, for derivation of the governing equations on the sandwich plate, first-order shear deformation plate theory along with von Karman-type of kinematic nonlinearity are implemented. The derived partial differential equations (PDEs) have been transformed to the ordinary differential equations (ODEs) through the Galerkin method. After that, the nonlinear vibration equations for the sandwich plate have been solved by multiple time scale perturbation technique. Moreover, for evaluating the effect of different parameters such as electric and magnetic fields, fractional order, the ratio of the core-to-face thickness and the power low index on the nonlinear vibration characteristics of sandwich plates with FG-MEE face sheets, the parametric analysis has been performed. The obtained results revealed the enhanced nonlinear natural frequency through an increment in the fractional order. Furthermore, the prominent influence of fractional order on the nonlinear frequency of sandwich plate was declared at the negative electric potential and positive magnetic potential.


2018 ◽  
Vol 202 ◽  
pp. 324-332 ◽  
Author(s):  
José S. Moita ◽  
Aurélio L. Araújo ◽  
Victor Franco Correia ◽  
Cristóvão M. Mota Soares ◽  
José Herskovits

2020 ◽  
Vol 26 (19-20) ◽  
pp. 1627-1645 ◽  
Author(s):  
Alireza Rahimi ◽  
Akbar Alibeigloo ◽  
Mehran Safarpour

Because of promoted thermomechanical performance of functionally graded graphene platelet–reinforced composite ultralight porous structural components, this article investigates bending and free vibration behavior of functionally graded graphene platelet–reinforced composite porous cylindrical shell based on the theory of elasticity. Effective elasticity modulus of the composite is estimated with the aid of modified version of Halpin–Tsai micromechanics. Rule of mixtures is used to obtain mass density and Poisson’s ratio of the graphene platelet–reinforced composite shell. An analytical solution is introduced to obtain the natural frequencies and static behavior of simply supported cylindrical shell by applying the state-space technique along the radial coordinate and Fourier series expansion along the circumferential and axial direction. In addition, differential quadrature method is used to explore the response of the cylindrical shell in the other cases of boundary conditions. Validity of the applied approach is examined by comparing the numerical results with those published in the available literature. A comprehensive parametric study is conducted on the effects of different combinations of graphene platelets distribution patterns and porosity distribution patterns, boundary conditions, graphene platelets weight fraction, porosity coefficient, and geometry of the shell (such as mid-radius to thickness ratio and length to mid-radius ratio) on the bending and free vibration behavior of the functionally graded graphene platelet–reinforced composite porous cylindrical shell. The results of this study provide useful practical tips for engineers designing composite structures.


2012 ◽  
Vol 65 ◽  
pp. 74-80 ◽  
Author(s):  
S. Natarajan ◽  
S. Chakraborty ◽  
M. Thangavel ◽  
S. Bordas ◽  
T. Rabczuk

2017 ◽  
Vol 21 (2) ◽  
pp. 727-757 ◽  
Author(s):  
Rafik Meksi ◽  
Samir Benyoucef ◽  
Abdelkader Mahmoudi ◽  
Abdelouahed Tounsi ◽  
El Abbas Adda Bedia ◽  
...  

In this study, a new shear deformation plate theory is introduced to illustrate the bending, buckling and free vibration responses of functionally graded material sandwich plates. A new displacement field containing integrals is proposed which involves only four variables. Based on the suggested theory, the equations of motion are derived from Hamilton’s principle. This theory involves only four unknown functions and accounts for quasi-parabolic distribution of transverse shear stress. In addition, the transverse shear stresses are vanished at the top and bottom surfaces of the sandwich plate. The Navier solution technique is adopted to derive analytical solutions for simply supported rectangular sandwich plates. The accuracy and effectiveness of proposed model are verified by comparison with previous research. A detailed numerical study is carried out to examine the influence of the critical buckling loads, deflections, stresses, natural frequencies and sandwich plate type on the bending, buckling and free vibration responses of functionally graded sandwich plates.


Sign in / Sign up

Export Citation Format

Share Document