Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas

2002 ◽  
Vol 35 (6) ◽  
pp. 399-405 ◽  
Author(s):  
Gupta C. ◽  
Dubey R. ◽  
Maheshwari D.
HortScience ◽  
2018 ◽  
Vol 53 (10) ◽  
pp. 1461-1466
Author(s):  
Margaret T. Mmbaga ◽  
Lucas M. Mackasmiel ◽  
Frank A. Mrema

Six biological control agents (BCAs) (two bacteria, two fungi, and two yeasts) that were previously shown to be effective against powdery mildew (Erysiphe pulchra) were tested for efficacy against Macrophomina phaseolina root rot on flowering dogwood (Cornus florida) in the greenhouse. Two of the bacterial isolates, Stenotrophomonas sp. (B17A) and Serratia sp. (B17B), were effective in controlling both macrophomina root rot and powdery mildew, similar to fungicide control thiophanate methyl, when roots were drenched with the six BCAs individually. In addition, the two bacterial BCAs improved plant growth with respect to stem diameter, stem length, dry weight, and green foliage compared with fungicide-treated plants or nontreated controls grown in sterile soil. These results confirm previous results in which B17A and B17B suppressed powdery mildew and also promoted plant growth in flowering dogwood. Although macrophomina root rot has been previously reported as a potential problem in flowering dogwood, especially in field conditions, simultaneous infection with macrophomina root rot and powdery mildew has not been previously reported. This study confirmed that M. phaseolina infection was characterized by stubby roots and black root lesions, and plants infected with both powdery mildew and macrophomina root rot had smaller root mass compared with fungicide-treated plants. Neither of the two pathogens killed their host plants, but compounded infections significantly reduced the plant root system and plant growth. The efficacy of the two bacterial isolates in controlling both powdery mildew and macrophomina root rot suggests their potential utilization in controlling both diseases in dogwood nursery production and in other plants that are hosts to both powdery mildew and macrophomina root rot. Plant growth promoted by the two BCAs may be attributed to powdery mildew and macrophomina root rot control, but comparisons between fungicide-treated plants and control plants not inoculated with BCAs or root rot pathogen suggested that the two BCAs may play a role as bio-stimulants in growth enhancement. These results also suggest that the two biocontrol agents are not phytotoxic to dogwood.


2017 ◽  
Vol 165 (7-8) ◽  
pp. 463-478 ◽  
Author(s):  
Abhinav Aeron ◽  
Dinesh Kumar Maheshwari ◽  
Shrivardhan Dheeman ◽  
Mohit Agarwal ◽  
Ramesh Chand Dubey ◽  
...  

2020 ◽  
Vol 12 (17) ◽  
pp. 6856
Author(s):  
Humaira Yasmin ◽  
Rabia Naz ◽  
Asia Nosheen ◽  
Muhammad Nadeem Hassan ◽  
Noshin Ilyas ◽  
...  

Controlling agricultural pests using suitable biocontrol agents has been considered the best strategy for sustainable agriculture. Charcoal rot caused by a necrotrophic fungus Macrophomina phaseolina is responsible for a 30–50% annual reduction in soybean yield worldwide. Little is known about the role of Bacillus clausii in reducing charcoal rot disease severity in the soybean crop. In this study, we investigated plant growth promoting and antagonistic potential of Pseudomonas putida (MT604992) and Bacillus clausii (MT604989) against charcoal rot disease incidence in soybean. Among twenty bacteria isolated from soil and water samples of two different hot springs of Gilgit-Baltistan, Pakistan, 80% were siderophore positive; 65% were hydrogen cyanide (HCN) positive; 55%, 30%, and 75% were phosphate, potassium, and zinc solubilizers, respectively. Based on higher antagonistic activities and plant growth promoting traits five strains were selected for in vitro screening. Out of all tested strains, Pseudomonas putida and Bacillus clausii showed a significant increase in germination, growth, and disease suppression in soybean. These strains produced a pronounced increase in relative water content, photosynthetic pigments, membrane stability, proline, antioxidant enzymes status, phytohormones content (Salicylic acid, and Jasmonic acid), and disease suppression in comparison to control plants. Bacillus clausii mitigated the disease by 97% with a marked increase in the proline content (73% and 89%), superoxide dismutase (356% and 208%), peroxidase (439% and 138.6%), catalase (255.8% and 80.8%), and ascorbate peroxidase (228% and 90%) activities in shoots and roots, respectively. Infected plants showed an increase in salicylic acid and jasmonic acid content which was further increased with the application of the selected strains to increase resistance against pathogens. To our knowledge, this is the first study showing a rise in salicylic acid and jasmonic acid in Macrophomina phaseolina infected plants. These two strains are suggested as a cost-effective, eco-friendly, and sustainable alternative to chemical fungicides. However, there is a need to explore the field testing and molecular mechanisms leading to disease suppression by these strains.


Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 645 ◽  
Author(s):  
Hamed K. Abbas ◽  
Nacer Bellaloui ◽  
Cesare Accinelli ◽  
James R. Smith ◽  
W. Thomas Shier

Charcoal rot disease, caused by the fungus Macrophomina phaseolina, results in major economic losses in soybean production in southern USA. M. phaseolina has been proposed to use the toxin (-)-botryodiplodin in its root infection mechanism to create a necrotic zone in root tissue through which fungal hyphae can readily enter the plant. The majority (51.4%) of M. phaseolina isolates from plants with charcoal rot disease produced a wide range of (-)-botryodiplodin concentrations in a culture medium (0.14–6.11 µg/mL), 37.8% produced traces below the limit of quantification (0.01 µg/mL), and 10.8% produced no detectable (-)-botryodiplodin. Some culture media with traces or no (-)-botryodiplodin were nevertheless strongly phytotoxic in soybean leaf disc cultures, consistent with the production of another unidentified toxin(s). Widely ranging (-)-botryodiplodin levels (traces to 3.14 µg/g) were also observed in the roots, but not in the aerial parts, of soybean plants naturally infected with charcoal rot disease. This is the first report of (-)-botryodiplodin in plant tissues naturally infected with charcoal rot disease. No phaseolinone was detected in M. phaseolina culture media or naturally infected soybean tissues. These results are consistent with (-)-botryodiplodin playing a role in the pathology of some, but not all, M. phaseolina isolates from soybeans with charcoal rot disease in southern USA.


Sign in / Sign up

Export Citation Format

Share Document