Effect of rotation, nitrogen fertilization and management of crop residues on some chemical, microbiological and biochemical properties of soil

1997 ◽  
Vol 24 (3) ◽  
pp. 311-316 ◽  
Author(s):  
P. Perucci ◽  
U. Bonciarelli ◽  
R. Santilocchi ◽  
A. A. Bianchi
2020 ◽  
Author(s):  
Krzysztof Gondek ◽  
Monika Mierzwa Hersztek ◽  
Wojciech Grzyma a ◽  
Tomasz G b

Author(s):  
Rafał STRACHEL ◽  
Jadwiga WYSZKOWSKA ◽  
Małgorzata BAĆMAGA

The aim of these studies was to determine the influence of excessive zinc doses on the microbiological and enzymatic properties of soil. Also, an evaluation of the possibility to stimulate remediation processes by nitrogen fertilisation of the soil was attempted. Zinc was applied to loamy sand in the amounts of 0, 250, 500, 750, 1000, 1250 mg Zn2+ kg–1 DM soil, while nitrogen in the form of urea in doses of 0, 250, 500 mg N kg–1 DM soil. Soil samples were incubated at a temperature of 25 °C, maintaining a constant humidity equal to 50% of the maximum water capacity. In the 2nd and 20th week of the experiment, the following factors were determined: activity of dehydrogenases and catalase, and number of organotrophic bacteria, copiotrophic bacteria, oligotrophic bacteria, actinomycetes, and fungi. Zinc inhibited the enzymatic activity of the soil, while causing a slight increase in populations of microorganisms. Only fungi reacted unequivocally positively to contamination of the soil with zinc, therefore demonstrating changes in the biodiversity of microorganisms. Nitrogen fertilisation of the soil resulted in stabilization of the environment contaminated with zinc by stimulation of growth of microorganisms resistant to the influence of this metal.


1991 ◽  
Vol 71 (3) ◽  
pp. 377-387 ◽  
Author(s):  
C. A. Campbell ◽  
R. P. Zentner ◽  
K. E. Bowren ◽  
L. Townley-Smith ◽  
M. Schnitzer

The effects of crop rotation and various cultural practices on soil organic matter and some biochemical characteristics of a heavy-textured, Orthic Black Chernozem with a thick A horizon were determined after 31 yr at Melfort, Saskatchewan. Treatments investigated included: fertilization, cropping frequency, green manuring, and inclusion of grass-legume hay crops in predominantly spring wheat (Triticum aestivum L.) systems. The results showed that neither soil organic C nor N in the top 15 cm of soil, nor hydrolyzable amino acids, nor C mineralized in 14 d at 20 °C were influenced by fertilization. However, the relative molar distribution (RMD) of the amino acids reflected the influence of fertilization and the phase (Rot-yr) of the legume green manure rotation sampled. Some characteristics assessed increased marginally with increasing cropping frequency but differences were less marked than results obtained earlier in a heavy-textured Black Chernozem with a thin A horizon at Indian Head, Saskatchewan. The relationship between soil organic matter or C mineralization versus estimated crop residues, residue C, or residue N returned to the land over the 31-yr period, were not significant in the Melfort soil. This contrasts with our findings for the thin Black soil. We speculate that the lack of soil organic matter response in the Melfort soil was due to its very high organic matter content (about 64 t ha−1C and 6.5 t ha−1N in the top 15 cm). We also hypothesized that the amino acid RMD results, which differed from most of those reported in the literature, may be reflecting the more recent cropping history of the soil. This aspect requires further research into the composition and distribution of the humic materials in this soil. Key words: Amino acids, relative molar distribution, C respiration, green manures, fertilization


Author(s):  
Jadwiga Wyszkowska ◽  
Jan Kucharski ◽  
Monika Tomkiel ◽  
Jadwiga Wyszkowska ◽  
Małgorzata Baćmaga ◽  
...  

2018 ◽  
Vol 69 (3) ◽  
pp. 169-176
Author(s):  
Małgorzata Baćmaga ◽  
Jadwiga Wyszkowska ◽  
Jan Kucharski ◽  
Piotr Kaczyński

Abstract Laboratory tests were performed on sandy loamy soil to establish the relations between bacterial diversity, soil enzyme activity and degradation of Amistar 250 SC, Falcon 460 EC and Gwarant 500 SC fungicides. Apart from carrying out microbiological and biochemical analyses, the residues of active substances from the tested fungicides were determined. Structural diversity of was determined based on the next-generation sequencing (NGS) method, and fungicide residues the liquid chromatography tandem-mass spectrometry (LC-MS/MS). It was found that changes in bacterial diversity occurred in the soil subject to fungicide treatment, particularly at the family and genus level. Proteobacteria, Firmicutes and Actinobacteria were prevailing in all soil samples. Bacillus occurred both in the control soil and in the soil treated with fungicides, while Pseudonocardia occurred only in the fungicide-treated soil. Of all the fungicides tested, the biggest changes in bacterial diversity were caused by Gwarant 500 SC. The preparations tested not only affected the composition of soil microbiota, but also contributed to changes in the biochemical properties of soil by inhibiting the activity of almost all tested enzymes, with the exception of alkaline phosphatase and β-glucosidase. Chlorothalinil was the fastest degraded in the soil and spiroxamine at the slowest.


2020 ◽  
Vol 25 (6) ◽  
pp. 929-952
Author(s):  
Martin A. Bolinder ◽  
Felicity Crotty ◽  
Annemie Elsen ◽  
Magdalena Frac ◽  
Tamás Kismányoky ◽  
...  

Abstract International initiatives are emphasizing the capture of atmospheric CO2 in soil organic C (SOC) to reduce the climatic footprint from agroecosystems. One approach to quantify the contribution of management practices towards that goal is through analysis of long-term experiments (LTEs). Our objectives were to analyze knowledge gained in literature reviews on SOC changes in LTEs, to evaluate the results regarding interactions with pedo-climatological factors, and to discuss disparities among reviews in data selection criteria. We summarized mean response ratios (RRs) and stock change rate (SCR) effect size indices from twenty reviews using paired comparisons (N). The highest RRs were found with manure applications (30%, N = 418), followed by aboveground crop residue retention and the use of cover crops (9–10%, N = 995 and 129), while the effect of nitrogen fertilization was lowest (6%, N = 846). SCR for nitrogen fertilization exceeded that for aboveground crop residue retention (233 versus 117 kg C ha−1 year−1, N = 183 and 279) and was highest for manure applications and cover crops (409 and 331 kg C ha−1 year−1, N = 217 and 176). When data allows, we recommend calculating both RR and SCR because it improves the interpretation. Our synthesis shows that results are not always consistent among reviews and that interaction with texture and climate remain inconclusive. Selection criteria for study durations are highly variable, resulting in irregular conclusions for the effect of time on changes in SOC. We also discuss the relationships of SOC changes with yield and cropping systems, as well as conceptual problems when scaling-up results obtained from field studies to regional levels.


Sign in / Sign up

Export Citation Format

Share Document