Precipitation responses to radiative effects of ice clouds: A cloud-resolving modeling study of a pre-summer torrential precipitation event

2016 ◽  
Vol 33 (10) ◽  
pp. 1137-1142 ◽  
Author(s):  
Xinyong Shen ◽  
Wenyan Huang ◽  
Chunyan Guo ◽  
Xiaocen Jiang
2014 ◽  
Vol 23 (2) ◽  
pp. 024204 ◽  
Author(s):  
Shou-Ting Gao ◽  
Xiao-Fan Li ◽  
Yu-Shu Zhou

2018 ◽  
Vol 18 (16) ◽  
pp. 12105-12121 ◽  
Author(s):  
Thomas Fauchez ◽  
Steven Platnick ◽  
Tamás Várnai ◽  
Kerry Meyer ◽  
Céline Cornet ◽  
...  

Abstract. In a context of global climate change, the understanding of the radiative role of clouds is crucial. On average, ice clouds such as cirrus have a significant positive radiative effect, but under some conditions the effect may be negative. However, many uncertainties remain regarding the role of ice clouds on Earth's radiative budget and in a changing climate. Global satellite observations are particularly well suited to monitoring clouds, retrieving their characteristics and inferring their radiative impact. To retrieve ice cloud properties (optical thickness and ice crystal effective size), current operational algorithms assume that each pixel of the observed scene is plane-parallel and homogeneous, and that there is no radiative connection between neighboring pixels. Yet these retrieval assumptions are far from accurate, as real radiative transfer is 3-D. This leads to the plane-parallel and homogeneous bias (PPHB) plus the independent pixel approximation bias (IPAB), which impacts both the estimation of top-of-the-atmosphere (TOA) radiation and the retrievals. An important factor that determines the impact of these assumptions is the sensor spatial resolution. High-spatial-resolution pixels can better represent cloud variability (low PPHB), but the radiative path through the cloud can involve many pixels (high IPAB). In contrast, low-spatial-resolution pixels poorly represent the cloud variability (high PPHB), but the radiation is better contained within the pixel field of view (low IPAB). In addition, the solar and viewing geometry (as well as cloud optical properties) can modulate the magnitude of the PPHB and IPAB. In this, Part II of our study, we simulate TOA 0.86 and 2.13 µm solar reflectances over a cirrus uncinus scene produced by the 3DCLOUD model. Then, 3-D radiative transfer simulations are performed with the 3DMCPOL code at spatial resolutions ranging from 50 m to 10 km, for 12 viewing geometries and nine solar geometries. It is found that, for simulated nadir observations taken at resolution higher than 2.5 km, horizontal radiation transport (HRT) dominates biases between 3-D and 1-D reflectance calculations, but these biases are mitigated by the side illumination and shadowing effects for off-zenith solar geometries. At resolutions coarser than 2.5 km, PPHB dominates. For off-nadir observations at resolutions higher than 2.5 km, the effect that we call THEAB (tilted and homogeneous extinction approximation bias) due to the oblique line of sight passing through many cloud columns contributes to a large increase of the reflectances, but 3-D radiative effects such as shadowing and side illumination for oblique Sun are also important. At resolutions coarser than 2.5 km, the PPHB is again the dominant effect. The magnitude and resolution dependence of PPHB and IPAB is very different for visible, near-infrared and shortwave infrared channels compared with the thermal infrared channels discussed in Part I of this study. The contrast of 3-D radiative effects between solar and thermal infrared channels may be a significant issue for retrieval techniques that simultaneously use radiative measurements across a wide range of solar reflectance and infrared wavelengths.


2019 ◽  
Vol 32 (14) ◽  
pp. 4145-4165 ◽  
Author(s):  
Elizabeth Berry ◽  
Gerald G. Mace ◽  
Andrew Gettelman

Abstract The distribution of clouds and their radiative effects in the Community Atmosphere Model, version 5 (CAM5), are compared to A-Train satellite data in Southeast Asia during the summer monsoon. Cloud radiative kernels are created based on populations of observed and modeled clouds separately in order to compare the sensitivity of the TOA radiation to changes in cloud fraction. There is generally good agreement between the observation- and model-derived cloud radiative kernels for most cloud types, meaning that the clouds in the model are heating and cooling like clouds in nature. Cloud radiative effects are assessed by multiplying the cloud radiative kernel by the cloud fraction histogram. For ice clouds in particular, there is good agreement between the model and observations, with optically thin cirrus producing a moderate warming effect and cirrostratus producing a slight cooling effect, on average. Consistent with observations, the model also shows that the median value of the ice water path (IWP) distribution, rather than the mean, is a more representative measure of the ice clouds that are responsible for heating. In addition, in both observations and the model, it is cirrus clouds with an IWP of 20 g m−2 that have the largest warming effect in this region, given their radiative heating and frequency of occurrence.


2007 ◽  
Vol 135 (7) ◽  
pp. 2794-2802 ◽  
Author(s):  
Fan Ping ◽  
Zhexian Luo ◽  
Xiaofan Li

Abstract The microphysical and radiative effects of ice clouds on tropical equilibrium states are investigated based on three two-dimensional cloud-resolving simulations imposed by zero vertical velocity and time-invariant zonal wind and sea surface temperature. An experiment without ice microphysics (ice microphysical and radiative effects; C00), another experiment without ice radiative effects (CI0), and the control experiment (CIR) are carried out. The model with cyclic lateral boundaries is integrated for 40 days to reach equilibrium states in all experiments. CI0 produces a colder and drier equilibrium state than CIR and C00 do through generating a larger IR cooling, a larger vapor condensation rate, and consuming a larger amount of water vapor. A larger surface rain rate occurs in CI0 than in CIR and C00. The ice radiative effects on thermodynamic equilibrium states are stronger than the ice microphysical effects so that the exclusion of ice microphysics yields a colder and drier equilibrium state in C00 than in CIR. The ice radiative effects and the ice microphysical effects on surface rainfall processes are largely offset, which leads to similar zonal-mean surface rain rates in C00 and CIR.


2016 ◽  
Vol 29 (21) ◽  
pp. 7651-7674 ◽  
Author(s):  
Yulan Hong ◽  
Guosheng Liu ◽  
J.-L. F. Li

Abstract Although it is well established that cirrus warms Earth, the radiative effect of the entire spectrum of ice clouds is not well understood. In this study, the role of all ice clouds in Earth’s radiation budget is investigated by performing radiative transfer modeling using ice cloud properties retrieved from CloudSat and CALIPSO measurements as inputs. Results show that, for the 2008 period, the warming effect (~21.8 ± 5.4 W m−2) induced by ice clouds trapping longwave radiation exceeds their cooling effect (~−16.7 ± 1.7 W m−2) caused by shortwave reflection, resulting in a net warming effect (~5.1 ± 3.8 W m−2) globally on the earth–atmosphere system. The net warming is over 15 W m−2 in the tropical deep convective regions, whereas cooling occurs in the midlatitudes, which is less than 10 W m−2 in magnitude. Seasonal variations of ice cloud radiative effects are evident in the midlatitudes where the net effect changes from warming during winter to cooling during summer, whereas warming occurs all year-round in the tropics. Ice cloud optical depth τ is shown to be an important factor in determining the sign and magnitude of the net radiative effect. Ice clouds with τ < 4.6 display a warming effect with the largest contributions from those with τ ≈ 1.0. In addition, ice clouds cause vertically differential heating and cooling of the atmosphere, particularly with strong heating in the upper troposphere over the tropics. At Earth’s surface, ice clouds produce a cooling effect no matter how small the τ value is.


Sign in / Sign up

Export Citation Format

Share Document