scholarly journals Using A-Train Observations to Evaluate Cloud Occurrence and Radiative Effects in the Community Atmosphere Model during the Southeast Asia Summer Monsoon

2019 ◽  
Vol 32 (14) ◽  
pp. 4145-4165 ◽  
Author(s):  
Elizabeth Berry ◽  
Gerald G. Mace ◽  
Andrew Gettelman

Abstract The distribution of clouds and their radiative effects in the Community Atmosphere Model, version 5 (CAM5), are compared to A-Train satellite data in Southeast Asia during the summer monsoon. Cloud radiative kernels are created based on populations of observed and modeled clouds separately in order to compare the sensitivity of the TOA radiation to changes in cloud fraction. There is generally good agreement between the observation- and model-derived cloud radiative kernels for most cloud types, meaning that the clouds in the model are heating and cooling like clouds in nature. Cloud radiative effects are assessed by multiplying the cloud radiative kernel by the cloud fraction histogram. For ice clouds in particular, there is good agreement between the model and observations, with optically thin cirrus producing a moderate warming effect and cirrostratus producing a slight cooling effect, on average. Consistent with observations, the model also shows that the median value of the ice water path (IWP) distribution, rather than the mean, is a more representative measure of the ice clouds that are responsible for heating. In addition, in both observations and the model, it is cirrus clouds with an IWP of 20 g m−2 that have the largest warming effect in this region, given their radiative heating and frequency of occurrence.

2017 ◽  
Vol 17 (7) ◽  
pp. 4731-4749 ◽  
Author(s):  
Chenglai Wu ◽  
Xiaohong Liu ◽  
Minghui Diao ◽  
Kai Zhang ◽  
Andrew Gettelman ◽  
...  

Abstract. In this study we evaluate cloud properties simulated by the Community Atmosphere Model version 5 (CAM5) using in situ measurements from the HIAPER Pole-to-Pole Observations (HIPPO) campaign for the period of 2009 to 2011. The modeled wind and temperature are nudged towards reanalysis. Model results collocated with HIPPO flight tracks are directly compared with the observations, and model sensitivities to the representations of ice nucleation and growth are also examined. Generally, CAM5 is able to capture specific cloud systems in terms of vertical configuration and horizontal extension. In total, the model reproduces 79.8 % of observed cloud occurrences inside model grid boxes and even higher (94.3 %) for ice clouds (T ≤ −40 °C). The missing cloud occurrences in the model are primarily ascribed to the fact that the model cannot account for the high spatial variability of observed relative humidity (RH). Furthermore, model RH biases are mostly attributed to the discrepancies in water vapor, rather than temperature. At the micro-scale of ice clouds, the model captures the observed increase of ice crystal mean sizes with temperature, albeit with smaller sizes than the observations. The model underestimates the observed ice number concentration (Ni) and ice water content (IWC) for ice crystals larger than 75 µm in diameter. Modeled IWC and Ni are more sensitive to the threshold diameter for autoconversion of cloud ice to snow (Dcs), while simulated ice crystal mean size is more sensitive to ice nucleation parameterizations than to Dcs. Our results highlight the need for further improvements to the sub-grid RH variability and ice nucleation and growth in the model.


Author(s):  
Sukanta Kumar Das

The study has been attempted to investigate the relationship between the soil-water and the Indian summer monsoon (ISM) rainfall through the simulation of a global climate model named Community Atmosphere Model (CAM3). Two sets of simulation have been done during monsoon season for the years 2009 to 2012 using the pre-monsoon (May) and the previous winter season (December of previous year) state of soil-water as the model initial conditions. The control simulation and four sensitivity cases assuming 25% and 50% dryer and wetter soil-water respectively have been considered for all the aforesaid four years and for both the set of experiments. It has been observed that the impact of upper level soil-water persist for 15 to 20 days of simulation during the summer monsoon; the middle and lower layer soil state persist for a longer period of time due to its slow-varying nature with time. The daily surface temperature shows strong coupling with the upper layer of soil-water. When taken into comparison with the wet soil conditions, the dry soil state in most of the circumstances causes less rainfall.  The Pearson correlation coefficient (PCC) and partial correlation technique have been implied to demonstrate the relationship between the daily soil-water columns, subsequent 30-days accumulated rainfall and past 21-days accumulated rainfall. Strong negative correlation has been reported between the soil-water and subsequent 30-days accumulated (All-India Rainfall) AIR for different simulation cases with dry soil conditions; however, the relation weakened and turned positive over some parts of the region for the simulations with wet soil conditions.


2018 ◽  
Author(s):  
Hunter Brown ◽  
Xiaohong Liu ◽  
Yan Feng ◽  
Yiquan Jiang ◽  
Mingxuan Wu ◽  
...  

Abstract. A recent development in the representation of aerosols in climate models is the realization that some components of organic aerosol (OA), emitted from biomass and biofuel burning, can have a significant contribution to short-wave radiation absorption in the atmosphere. The absorbing fraction of OA is referred to as brown carbon (BrC). This study introduces one of the first implementations of BrC into the Community Atmosphere Model version 5 (CAM5), using a parameterization for BrC absorptivity described in Saleh et al. (2014). 9-year experiments are run (2003–2011) with prescribed emissions and sea surface temperatures to analyze the effect of BrC in the atmosphere. Model validation is conducted via model comparison to single-scatter albedo and aerosol optical depth from the Aerosol Robotic Network (AERONET). This comparison reveals a model underestimation of SSA in biomass burning regions for both default and BrC model runs, while a comparison between AERONET and model absorption Angstrom exponent shows a marked improvement with BrC implementation. Global annual average radiative effects are calculated due to aerosol-radiation interactions (REari; 0.13 ± 0.01 W m−2) and aerosol-cloud interactions (REaci; 0.01 ± 0.04 W m−2). REari is similar to other studies' estimations of BrC direct radiative effect, while REaci indicates a global reduction in low clouds due to the BrC semi-direct effect. The mechanisms for these physical changes are investigated and found to correspond with changes in global circulation patterns. Comparisons of BrC implementation approaches find that this implementation predicts a lower BrC REari in the Arctic regions than previous studies with CAM5. Implementation of BrC bleaching effect shows a significant reduction in REari (0.06 ± 0.008 W m−2). Also, variations in OA density can lead to differences in REari and REaci, indicating the importance of specifying this property when estimating the BrC radiative effects and when comparing similar studies.


2016 ◽  
Vol 29 (21) ◽  
pp. 7651-7674 ◽  
Author(s):  
Yulan Hong ◽  
Guosheng Liu ◽  
J.-L. F. Li

Abstract Although it is well established that cirrus warms Earth, the radiative effect of the entire spectrum of ice clouds is not well understood. In this study, the role of all ice clouds in Earth’s radiation budget is investigated by performing radiative transfer modeling using ice cloud properties retrieved from CloudSat and CALIPSO measurements as inputs. Results show that, for the 2008 period, the warming effect (~21.8 ± 5.4 W m−2) induced by ice clouds trapping longwave radiation exceeds their cooling effect (~−16.7 ± 1.7 W m−2) caused by shortwave reflection, resulting in a net warming effect (~5.1 ± 3.8 W m−2) globally on the earth–atmosphere system. The net warming is over 15 W m−2 in the tropical deep convective regions, whereas cooling occurs in the midlatitudes, which is less than 10 W m−2 in magnitude. Seasonal variations of ice cloud radiative effects are evident in the midlatitudes where the net effect changes from warming during winter to cooling during summer, whereas warming occurs all year-round in the tropics. Ice cloud optical depth τ is shown to be an important factor in determining the sign and magnitude of the net radiative effect. Ice clouds with τ < 4.6 display a warming effect with the largest contributions from those with τ ≈ 1.0. In addition, ice clouds cause vertically differential heating and cooling of the atmosphere, particularly with strong heating in the upper troposphere over the tropics. At Earth’s surface, ice clouds produce a cooling effect no matter how small the τ value is.


2017 ◽  
Author(s):  
Chenglai Wu ◽  
Xiaohong Liu ◽  
Minghui Diao ◽  
Kai Zhang ◽  
Andrew Gettelman ◽  
...  

Abstract. In this study we evaluate cloud properties simulated by the Community Atmosphere Model Version 5 (CAM5) using in-situ measurements from the HIAPER Pole-to-Pole Observations (HIPPO) for the period of 2009 to 2011. The modeled wind and temperature are nudged towards reanalysis. Model results collocated with HIPPO flight tracks are directly compared with the observations, and model sensitivities to the representations of ice nucleation and growth are also examined. Generally, CAM5 is able to capture specific cloud systems in terms of vertical configuration and horizontal extension. In total, the model reproduces 79.8 % of observed cloud occurrences inside model grid boxes, and even higher (94.3 %) for ice clouds (T ≤ −40 °C). The missing cloud occurrences in the model are primarily ascribed to the fact that the model cannot account for the high spatial variability of observed relative humidity (RH). Furthermore, model RH biases are mostly attributed to the discrepancies in water vapor, rather than temperature. At the micro-scale of ice clouds, the model captures the observed increase of ice crystal mean sizes with temperature, albeit with smaller sizes than the observations. The model underestimates the observed ice number concentration (Ni) and ice water content (IWC) for ice crystals larger than 75 μm in diameter. Modeled IWC and Ni are more sensitive to the threshold diameter for autoconversion of cloud ice to snow (Dcs), while simulated ice crystal mean size is more sensitive to ice nucleation parameterizations than to Dcs. Our results highlight the need for further improvements to the sub-grid RH variability and ice nucleation and growth in the model.


2018 ◽  
Vol 18 (24) ◽  
pp. 17745-17768 ◽  
Author(s):  
Hunter Brown ◽  
Xiaohong Liu ◽  
Yan Feng ◽  
Yiquan Jiang ◽  
Mingxuan Wu ◽  
...  

Abstract. A recent development in the representation of aerosols in climate models is the realization that some components of organic aerosol (OA), emitted from biomass and biofuel burning, can have a significant contribution to shortwave radiation absorption in the atmosphere. The absorbing fraction of OA is referred to as brown carbon (BrC). This study introduces one of the first implementations of BrC into the Community Atmosphere Model version 5 (CAM5), using a parameterization for BrC absorptivity described in Saleh et al. (2014). Nine-year experiments are run (2003–2011) with prescribed emissions and sea surface temperatures to analyze the effect of BrC in the atmosphere. Model validation is conducted via model comparison to single-scatter albedo and aerosol optical depth from the Aerosol Robotic Network (AERONET). This comparison reveals a model underestimation of single scattering albedo (SSA) in biomass burning regions for both default and BrC model runs, while a comparison between AERONET and the model absorption Ångström exponent shows a marked improvement with BrC implementation. Global annual average radiative effects are calculated due to aerosol–radiation interaction (REari; 0.13±0.01 W m−2) and aerosol–cloud interaction (REaci; 0.01±0.04 W m−2). REari is similar to other studies' estimations of BrC direct radiative effect, while REaci indicates a global reduction in low clouds due to the BrC semi-direct effect. The mechanisms for these physical changes are investigated and found to correspond with changes in global circulation patterns. Comparisons of BrC implementation approaches find that this implementation predicts a lower BrC REari in the Arctic regions than previous studies with CAM5. Implementation of BrC bleaching effect shows a significant reduction in REari (0.06±0.008 W m−2). Also, variations in OA density can lead to differences in REari and REaci, indicating the importance of specifying this property when estimating the BrC radiative effects and when comparing similar studies.


2018 ◽  
Vol 31 (6) ◽  
pp. 2299-2320 ◽  
Author(s):  
Hua Song ◽  
Zhibo Zhang ◽  
Po-Lun Ma ◽  
Steven J. Ghan ◽  
Minghuai Wang

This paper presents a satellite-observation-based evaluation of the marine boundary layer (MBL) cloud properties from two Community Atmosphere Model, version 5 (CAM5), simulations, one with the standard parameterization schemes (CAM5–Base) and the other with the Cloud Layers Unified by Binormals scheme (CAM5–CLUBB). When comparing the direct model outputs, the authors find that CAM5–CLUBB produces more MBL clouds, a smoother transition from stratocumulus to cumulus, and a tighter correlation between in-cloud water and cloud fraction than CAM5–Base. In the model-to-observation comparison using the COSP satellite simulators, the authors find that both simulations capture the main features and spatial patterns of the observed cloud fraction from MODIS and shortwave cloud radiative forcing (SWCF) from CERES. However, CAM5–CLUBB suffers more than CAM5–Base from a problem that can be best summarized as “undetectable” clouds (i.e., a significant fraction of simulated MBL clouds are thinner than the MODIS detection threshold). This issue leads to a smaller COSP–MODIS cloud fraction and a weaker SWCF in CAM5–CLUBB than the observations and also CAM5–Base in the tropical descending regions. Finally, the authors compare modeled radar reflectivity with CloudSat observations and find that both simulations, especially CAM5–CLUBB, suffer from an excessive drizzle problem. Further analysis reveals that the subgrid precipitation enhancement factors in CAM5–CLUBB are unrealistically large, which makes MBL clouds precipitate too excessively, and in turn results in too many undetectable thin clouds.


2013 ◽  
Vol 26 (14) ◽  
pp. 5150-5168 ◽  
Author(s):  
Richard B. Neale ◽  
Jadwiga Richter ◽  
Sungsu Park ◽  
Peter H. Lauritzen ◽  
Stephen J. Vavrus ◽  
...  

Abstract The Community Atmosphere Model, version 4 (CAM4), was released as part of the Community Climate System Model, version 4 (CCSM4). The finite volume (FV) dynamical core is now the default because of its superior transport and conservation properties. Deep convection parameterization changes include a dilute plume calculation of convective available potential energy (CAPE) and the introduction of convective momentum transport (CMT). An additional cloud fraction calculation is now performed following macrophysical state updates to provide improved thermodynamic consistency. A freeze-drying modification is further made to the cloud fraction calculation in very dry environments (e.g., the Arctic), where cloud fraction and cloud water values were often inconsistent in CAM3. In CAM4 the FV dynamical core further degrades the excessive trade-wind simulation, but reduces zonal stress errors at higher latitudes. Plume dilution alleviates much of the midtropospheric tropical dry biases and reduces the persistent monsoon precipitation biases over the Arabian Peninsula and the southern Indian Ocean. CMT reduces much of the excessive trade-wind biases in eastern ocean basins. CAM4 shows a global reduction in cloud fraction compared to CAM3, primarily as a result of the freeze-drying and improved cloud fraction equilibrium modifications. Regional climate feature improvements include the propagation of stationary waves from the Pacific into midlatitudes and the seasonal frequency of Northern Hemisphere blocking events. A 1° versus 2° horizontal resolution of the FV dynamical core exhibits superior improvements in regional climate features of precipitation and surface stress. Improvements in the fully coupled mean climate between CAM3 and CAM4 are also more substantial than in forced sea surface temperature (SST) simulations.


Sign in / Sign up

Export Citation Format

Share Document