scholarly journals FIO-ESM v2.0 Outputs for the CMIP6 Global Monsoons Model Intercomparison Project Experiments

2020 ◽  
Vol 37 (10) ◽  
pp. 1045-1056 ◽  
Author(s):  
Yajuan Song ◽  
Xinfang Li ◽  
Ying Bao ◽  
Zhenya Song ◽  
Meng Wei ◽  
...  

Abstract Three tiers of experiments in the Global Monsoons Model Intercomparison Project (GMMIP), one of the endorsed model intercomparison projects of phase 6 of the Coupled Model Intercomparison Project (CMIP6), are implemented by the First Institute of Oceanography Earth System Model version 2 (FIO-ESM v2.0), following the GMMIP protocols. Evaluation of global mean surface air temperature from 1870 to 2014 and climatological precipitation (1979–2014) in tier-1 shows that the atmosphere model of FIO-ESM v2.0 can reproduce the basic observed atmospheric features. In tier-2, the internal variability is captured by the coupled model, with the SST restoring to the model climatology plus the observed anomalies in the tropical Pacific and North Atlantic. Simulation of the Northern Hemisphere summer monsoon circulation is significantly improved by the SST restoration in the North Atlantic. In tier-3, five orographic perturbation experiments are conducted covering the period 1979–2014 by modifying the surface elevation or vertical heating in the prescribed region. In particular, the strength of the South Asian summer monsoon is reduced by removing the topography or thermal forcing above 500 m over the Asian continent. Monthly and daily simulated outputs of FIO-ESM v2.0 are provided through the Earth System Grid Federation (ESGF) node to contribute to a better understanding of the global monsoon system.

2013 ◽  
Vol 26 (18) ◽  
pp. 7187-7197 ◽  
Author(s):  
Wei Cheng ◽  
John C. H. Chiang ◽  
Dongxiao Zhang

Abstract The Atlantic meridional overturning circulation (AMOC) simulated by 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical (1850–2005) and future climate is examined. The historical simulations of the AMOC mean state are more closely matched to observations than those of phase 3 of the Coupled Model Intercomparison Project (CMIP3). Similarly to CMIP3, all models predict a weakening of the AMOC in the twenty-first century, though the degree of weakening varies considerably among the models. Under the representative concentration pathway 4.5 (RCP4.5) scenario, the weakening by year 2100 is 5%–40% of the individual model's historical mean state; under RCP8.5, the weakening increases to 15%–60% over the same period. RCP4.5 leads to the stabilization of the AMOC in the second half of the twenty-first century and a slower (then weakening rate) but steady recovery thereafter, while RCP8.5 gives rise to a continuous weakening of the AMOC throughout the twenty-first century. In the CMIP5 historical simulations, all but one model exhibit a weak downward trend [ranging from −0.1 to −1.8 Sverdrup (Sv) century−1; 1 Sv ≡ 106 m3 s−1] over the twentieth century. Additionally, the multimodel ensemble–mean AMOC exhibits multidecadal variability with a ~60-yr periodicity and a peak-to-peak amplitude of ~1 Sv; all individual models project consistently onto this multidecadal mode. This multidecadal variability is significantly correlated with similar variations in the net surface shortwave radiative flux in the North Atlantic and with surface freshwater flux variations in the subpolar latitudes. Potential drivers for the twentieth-century multimodel AMOC variability, including external climate forcing and the North Atlantic Oscillation (NAO), and the implication of these results on the North Atlantic SST variability are discussed.


2021 ◽  
Author(s):  
Anni Zhao ◽  
Chris Brierley

<p>Experiment outputs are now available from the Coupled Model Intercomparison Project’s 6<sup>th</sup> phase (CMIP6) and the past climate experiments defined in the Model Intercomparison Project’s 4<sup>th</sup> phase (PMIP4). All of this output is freely available from the Earth System Grid Federation (ESGF). Yet there are overheads in analysing this resource that may prove complicated or prohibitive. Here we document the steps taken by ourselves to produce ensemble analyses covering past and future simulations. We outline the strategy used to curate, adjust the monthly calendar aggregation and process the information downloaded from the ESGF. The results of these steps were used to perform analysis for several of the initial publications arising from PMIP4. We provide post-processed fields for each simulation, such as climatologies and common measures of variability. Example scripts used to visualise and analyse these fields is provided for several important case studies.</p>


2020 ◽  
Vol 6 (11) ◽  
pp. eaay6546 ◽  
Author(s):  
Xin Huang ◽  
Tianjun Zhou ◽  
Aiguo Dai ◽  
Hongmei Li ◽  
Chao Li ◽  
...  

A reliable projection of future South Asian summer monsoon (SASM) benefits a large population in Asia. Using a 100-member ensemble of simulations by the Max Planck Institute Earth System Model (MPI-ESM) and a 50-member ensemble of simulations by the Canadian Earth System Model (CanESM2), we find that internal variability can overshadow the forced SASM rainfall trend, leading to large projection uncertainties for the next 15 to 30 years. We further identify that the Interdecadal Pacific Oscillation (IPO) is, in part, responsible for the uncertainties. Removing the IPO-related rainfall variations reduces the uncertainties in the near-term projection of the SASM rainfall by 13 to 15% and 26 to 30% in the MPI-ESM and CanESM2 ensembles, respectively. Our results demonstrate that the uncertainties in near-term projections of the SASM rainfall can be reduced by improving prediction of near-future IPO and other internal modes of climate variability.


2020 ◽  
Vol 24 (3) ◽  
pp. 1131-1143 ◽  
Author(s):  
Thanh Le ◽  
Deg-Hyo Bae

Abstract. Climate extremes, such as floods and droughts, might have severe economic and societal impacts. Given the high costs associated with these events, developing early-warning systems is of high priority. Evaporation, which is driven by around 50 % of solar energy absorbed at surface of the Earth, is an important indicator of the global water budget, monsoon precipitation, drought monitoring and the hydrological cycle. Here we investigate the response of global evaporation to main modes of interannual climate variability, including the Indian Ocean Dipole (IOD), the North Atlantic Oscillation (NAO) and the El Niño–Southern Oscillation (ENSO). These climate modes may have an influence on temperature, precipitation, soil moisture and wind speed and are likely to have impacts on global evaporation. We utilized data of historical simulations and RCP8.5 (representative concentration pathway) future simulations derived from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Our results indicate that ENSO is an important driver of evaporation for many regions, especially the tropical Pacific. The significant IOD influence on evaporation is limited in western tropical Indian Ocean, while NAO is more likely to have impacts on evaporation of the North Atlantic European areas. There is high agreement between models in simulating the effects of climate modes on evaporation of these regions. Land evaporation is found to be less sensitive to considered climate modes compared to oceanic evaporation. The spatial influence of major climate modes on global evaporation is slightly more significant for NAO and the IOD and slightly less significant for ENSO in the 1906–2000 period compared to the 2006–2100 period. This study allows us to obtain insight about the predictability of evaporation and hence, may improve the early-warning systems of climate extremes and water resource management.


2019 ◽  
Author(s):  
Tomohiro Hajima ◽  
Michio Watanabe ◽  
Akitomo Yamamoto ◽  
Hiroaki Tatebe ◽  
Maki A. Noguchi ◽  
...  

Abstract. This study developed a new Model for Interdisciplinary Research on Climate, Earth System version2 for Long-term simulations (MIROC-ES2L) Earth system model (ESM) using a state-of-the-art climate model as the physical core. This model embeds a terrestrial biogeochemical component with explicit carbon–nitrogen interaction to account for soil nutrient control on plant growth and the land carbon sink. The model’s ocean biogeochemical component is largely updated to simulate biogeochemical cycles of carbon, nitrogen, phosphorus, iron, and oxygen such that oceanic primary productivity can be controlled by multiple nutrient limitations. The ocean nitrogen cycle is coupled with the land component via river discharge processes, and external inputs of iron from pyrogenic and lithogenic sources are considered. Comparison of a historical simulation with observation studies showed the model could reproduce reasonable historical changes in climate, the carbon cycle, and other biogeochemical variables together with reasonable spatial patterns of distribution of the present-day condition. The model demonstrated historical human perturbation of the nitrogen cycle through land use and agriculture, and it simulated the resultant impact on the terrestrial carbon cycle. Sensitivity analyses in preindustrial conditions revealed modeled ocean biogeochemistry could be changed regionally (but substantially) by nutrient inputs from the atmosphere and rivers. Through an idealized experiment of a 1 %CO2 increase scenario, we found the transient climate response (TCR) in the model is 1.5 K, i.e., approximately 70 % that of our previous model. The cumulative airborne fraction (AF) is also reduced by 15 % because of the intensified land carbon sink, resulting in an AF close to the multimodel mean of the Coupled Model Intercomparison Project Phase 5 (CMIP5) ESMs. The transient climate response to cumulative carbon emission (TCRE) is 1.3 K EgC−1, i.e., slightly smaller than the average of the CMIP5 ESMs, suggesting optimistic model performance in future climate projections. This model and the simulation results are contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). The ESM could help further understanding of climate–biogeochemical interaction mechanisms, projections of future environmental changes, and exploration of our future options regarding sustainable development by evolving the processes of climate, biogeochemistry, and human activities in a holistic and interactive manner.


2012 ◽  
Vol 3 (2) ◽  
pp. 245-261 ◽  
Author(s):  
G. M. Martin ◽  
R. C. Levine

Abstract. Various studies have shown the importance of Earth System feedbacks in the climate system and the necessity of including these in models used for making climate change projections. The HadGEM2 family of Met Office Unified Model configurations combines model components which facilitate the representation of many different processes within the climate system, including atmosphere, ocean and sea ice, and Earth System components including the terrestrial and oceanic carbon cycle and tropospheric chemistry. We examine the climatology of the Asian summer monsoon in present-day simulations and in idealised climate change experiments. Members of the HadGEM2 family are used, with a common physical framework (one of which includes tropospheric chemistry and an interactive terrestrial and oceanic carbon cycle), to investigate whether such components affect the way in which the monsoon changes. We focus particularly on the role of interactive vegetation in the simulations from these model configurations. Using an atmosphere-only HadGEM2 configuration, we investigate how the changes in land cover which result from the interaction between the dynamic vegetation and the model systematic rainfall biases affect the Asian summer monsoon, both in the present-day and in future climate projections. We demonstrate that the response of the dynamic vegetation to biases in regional climate, such as lack of rainfall over tropical dust-producing regions, can affect both the present-day simulation and the response to climate change forcing scenarios.


Sign in / Sign up

Export Citation Format

Share Document