Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia

2005 ◽  
Vol 24 (7-8) ◽  
pp. 793-807 ◽  
Author(s):  
A. M. Duan ◽  
G. X. Wu
Tellus B ◽  
2019 ◽  
Vol 71 (1) ◽  
pp. 1577070 ◽  
Author(s):  
Qianshan He ◽  
Xiangdong Zheng ◽  
Jian Li ◽  
Wei Gao ◽  
Yanyu Wang ◽  
...  

2020 ◽  
Vol 221 (3) ◽  
pp. 1971-1983
Author(s):  
Lin Chen ◽  
Lijun Liu ◽  
Fabio A Capitanio ◽  
Taras V Gerya ◽  
Yang Li

SUMMARY The Tibetan crust is sliced by several east–west trending suture zones. The role of these suture zones in the evolution of the Himalayan range and Tibetan plateau remains unclear. Here we use 3-D thermomechanical simulations to investigate the role of pre-existing weak zones within the Asian Plate in the formation of orogen and plateau growth during continental collision. Our results show that partitioning of deformation along the convergent margin leads to scraping off of crustal material into an orogenic wedge above the margin and crustal thickening in the retro-continent, eventually forming a large orogenic plateau in front of the indenter. Pre-existing weak zone(s) within the retro-continent is reactivated at the early stage of convergence, and facilitates the northward propagation of strain and widening of the orogenic plateau. The northernmost weak zone sets the northern limit of the Tibetan plateau. Our models also show rheological weakening of the congested buoyant crust within the collisional zone drives wedge-type exhumation of deeply buried crust at the southern flank of the plateau, which may explain the formation of the Greater Himalayan Sequence.


2016 ◽  
Vol 20 (1) ◽  
pp. 108-122 ◽  
Author(s):  
Zhanhuan Shang ◽  
Andrew White ◽  
A. Allan Degen ◽  
Ruijun Long

2016 ◽  
Vol 48 (5-6) ◽  
pp. 1705-1721 ◽  
Author(s):  
Yanhong Gao ◽  
Linhong Xiao ◽  
Deliang Chen ◽  
Fei Chen ◽  
Jianwei Xu ◽  
...  

2020 ◽  
Author(s):  
Yuting Wu ◽  
Xiaoming Hu ◽  
Ziqian Wang ◽  
Zhenning Li ◽  
Song Yang

<p>The surface temperature cold bias over the Tibetan Plateau (TP) is a long-lasting problem in both reanalysis data and climate models. While previous studies have mainly focused on local processes for this bias, the TP surface temperature is also closely related to tropical SST in both observations and Coupled Model Inter-comparison Project (CMIP5) models. This study investigates the role of tropical SST climatological bias in the TP surface temperature cold bias, and analysis of CMIP5 models suggests that the surface temperature cold bias over the TP is more obvious (about 4 K) in winter, with an east-west distribution pattern, than in summer (about 1 K), with a south-north distribution pattern. Considering that the tropical SST bias in CMIP5 models may be an important source of the TP surface temperature cold bias, a series of model experiments were conducted by the NCAR CAM4 to test the hypothesis. Model experiment results show that the tropical SST bias can reproduce cold bias over the TP, with 2 K in winter and about 0.5 K in summer. The mechanisms for TP surface temperature cold bias are different in winter and summer. In winter, tropical SST bias influences the TP surface temperature mainly by anomalous snow cover, while anomalous precipitation and clouds are more important for the temperature bias in summer.</p>


2021 ◽  
pp. 1-56
Author(s):  
Yu Zhao ◽  
Anmin Duan ◽  
Guoxiong Wu

AbstractThe atmospheric circulation changes dramatically over a few days before and after the onset of the South Asian monsoon in spring. It is accompanied by the annual maximum surface heating over the Tibetan Plateau. We conducted two sets of experiments with a coupled general circulation model to compare the response of atmospheric circulation and wind-driven circulation in the Indian Ocean to the thermal forcing of the Tibetan Plateau before and after the monsoon onset. The results show that the Tibetan Plateau's thermal forcing modulates the sea surface temperature (SST) of the Indian Ocean and the meridional circulation in the upper ocean with opposite effects during these two stages. The thermal forcing of the Tibetan Plateau always induces a southwesterly response over the northern Indian Ocean and weakens the northeasterly background circulation before the monsoon onset. Subsequently, wind-evaporation feedback results in a warming SST response. Meanwhile, the oceanic meridional circulation shows offshore upwellings in the north and southward transport in the upper layer crossing the equator, sinking near 15°S. After the monsoon onset, the thermal forcing of the Tibetan Plateau accelerates the background southwesterly and introduces a cooling response to the Indian Ocean SST. The response of oceanic meridional overturning circulation is limited to the north of the equator due to the location and structural evolution of the climatological local Hadley circulation. With an acceleration of the local Walker circulation, the underlying zonal currents also show corresponding changes, including a westerly drift along the equator, downwelling near Indonesia, offshore upwelling near Somalia, and a westward undercurrent.


2021 ◽  
Author(s):  
Chenguang Zhu

<div>The evolution of Cenozoic climate patterns in Asia has been linked to uplift of the Tibetan Plateau (TP), retreat of the Paratethys Sea, and global cooling. However, less attention has been placed on the latitudinal change of the TP. Here we report new climate modeling to explore how modern climate changes as a function of topographic growth and spatial migration of the TP. Our results show that the northward displacement of the uplifted proto‐TP within the subtropics can signifificantly affect the wind and precipitation pattern over East‐Central Asia. By compiling proxy‐based climatic records, paleolatitudinal and paleoelevational evolution models of the proto‐TP, and in comparison with previous modeling under a global paleogeography, we suggest that the northward migration of the proto‐TP in the Paleogene could have intensifified the aridity in Central Asia, but its inflfluence on East Asian precipitation and monsoonal circulation could be dependent on the paleogeography and other boundary conditions.</div>


2016 ◽  
Vol 16 (3) ◽  
pp. 1365-1375 ◽  
Author(s):  
X. Xu ◽  
T. Zhao ◽  
F. Liu ◽  
S. L. Gong ◽  
D. Kristovich ◽  
...  

Abstract. Rapid increases in pollutant emissions in conjunction with stagnant meteorological conditions result in haze pollution in China. Recent frequent haze in China has attracted worldwide attention. Here we show a relationship between the haze events and Tibetan Plateau (TP)'s environment and climate changes. Based on observational data taken over recent decades, we identify central-eastern China (CEC) as a climatological large-scale “susceptible region” of frequent haze, which is harbored by the TP with its impact on midlatitude westerly winds. The observational and modeling studies demonstrate that the interannual variations in the thermal forcing of TP are positively correlated with the incidences of wintertime haze over CEC. Further analysis indicates that the climate warming of the TP induced changes in atmospheric circulation, driving frequent haze events in CEC. The frequent haze occurrences in CEC are consistent with decreasing winter monsoon winds, intensifying downward air flows and increasing atmospheric stability in the lower troposphere over the CEC in association with upstream plateau's thermal anomalies. Therefore, variations of haze in China are related to mechanical and thermal forcing by the TP. Our results also suggest that implications of the large TP topography for environment and climate changes should be taken into account for air pollution mitigation policies in China.


Sign in / Sign up

Export Citation Format

Share Document