Influence of the boundary layer height on the global air–sea surface fluxes

2008 ◽  
Vol 33 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Erik Sahlée ◽  
Ann-Sofi Smedman ◽  
Ulf Högström
2009 ◽  
Vol 137 (1) ◽  
pp. 414-432 ◽  
Author(s):  
F. Couvreux ◽  
F. Guichard ◽  
P. H. Austin ◽  
F. Chen

Abstract Mesoscale water vapor heterogeneities in the boundary layer are studied within the context of the International H2O Project (IHOP_2002). A significant portion of the water vapor variability in the IHOP_2002 occurs at the mesoscale, with the spatial pattern and the magnitude of the variability changing from day to day. On 14 June 2002, an atypical mesoscale gradient is observed, which is the reverse of the climatological gradient over this area. The factors causing this water vapor variability are investigated using complementary platforms (e.g., aircraft, satellite, and in situ) and models. The impact of surface flux heterogeneities and atmospheric variability are evaluated separately using a 1D boundary layer model, which uses surface fluxes from the High-Resolution Land Data Assimilation System (HRLDAS) and early-morning atmospheric temperature and moisture profiles from a mesoscale model. This methodology, based on the use of robust modeling components, allows the authors to tackle the question of the nature of the observed mesoscale variability. The impact of horizontal advection is inferred from a careful analysis of available observations. By isolating the individual contributions to mesoscale water vapor variability, it is shown that the observed moisture variability cannot be explained by a single process, but rather involves a combination of different factors: the boundary layer height, which is strongly controlled by the surface buoyancy flux, the surface latent heat flux, the early-morning heterogeneity of the atmosphere, horizontal advection, and the radiative impact of clouds.


2014 ◽  
Vol 11 (11) ◽  
pp. 15507-15547 ◽  
Author(s):  
J. H. Rydsaa ◽  
F. Stordal ◽  
L. M. Tallaksen

Abstract. Amplified warming at high latitudes over the past decades has led to changes in the boreal and arctic climate system, such as structural changes in high latitude ecosystems and soil moisture properties. These changes trigger land-atmosphere feedbacks, through altered energy partitioning in response to changes in albedo and surface water fluxes. Local scale changes in the arctic and boreal zone may propagate to affect large scale climatic features. In this study, MODIS land surface data are used with the Weather Research and Forecasting model (WRF V3.5.1) and Noah LSM, in a series of experiments to simulate the influence of structural vegetation changes over a Northern European boreal ecosystem. Emphasis is placed on surface energy partitioning and near surface atmospheric variables, in order to investigate changes in atmospheric response due to observed and anticipated structural vegetation changes. We find that a northward migration of evergreen needle leaf forest into tundra regions causes an increase in latent rather than sensible heat fluxes, increased near surface temperatures and boundary layer height. Shrub expansion in tundra areas has only small effects on surface fluxes. However, it influences near surface wind speeds and boundary layer height. Northward migration of mixed forest across the present southern border of the boreal forest has largely opposite effects on surface fluxes and the near surface atmosphere, and acts to moderate the overall mean regional effects of boreal forest migration on the near surface atmosphere.


2017 ◽  
Author(s):  
Ting Yang ◽  
Zifa Wang ◽  
Wei Zhang ◽  
Alex Gbaguidi ◽  
Nubuo Sugimoto ◽  
...  

Abstract. Predicting air pollution events in low atmosphere over megacities requires thorough understanding of the tropospheric dynamic and chemical processes, involving notably, continuous and accurate determination of the boundary layer height (BLH). Through intensive observations experimented over Beijing (China), and an exhaustive evaluation existing algorithms applied to the BLH determination, persistent critical limitations are noticed, in particular over polluted episodes. Basically, under weak thermal convection with high aerosol loading, none of the retrieval algorithms is able to fully capture the diurnal cycle of the BLH due to pollutant insufficient vertical mixing in the boundary layer associated with the impact of gravity waves on the tropospheric structure. Subsequently, a new approach based on gravity wave theory (the cubic root gradient method: CRGM), is developed to overcome such weakness and accurately reproduce the fluctuations of the BLH under various atmospheric pollution conditions. Comprehensive evaluation of CRGM highlights its high performance in determining BLH from Lidar. In comparison with the existing retrieval algorithms, the CRGM potentially reduces related computational uncertainties and errors from BLH determination (strong increase of correlation coefficient from 0.44 to 0.91 and significant decrease of the root mean square error from 643 m to 142 m). Such newly developed technique is undoubtedly expected to contribute to improve the accuracy of air quality modelling and forecasting systems.


Sign in / Sign up

Export Citation Format

Share Document