scholarly journals Technical note: Boundary layer height determination from Lidar for improving air pollution episode modelling: development of new algorithm and evaluation

2017 ◽  
Author(s):  
Ting Yang ◽  
Zifa Wang ◽  
Wei Zhang ◽  
Alex Gbaguidi ◽  
Nubuo Sugimoto ◽  
...  

Abstract. Predicting air pollution events in low atmosphere over megacities requires thorough understanding of the tropospheric dynamic and chemical processes, involving notably, continuous and accurate determination of the boundary layer height (BLH). Through intensive observations experimented over Beijing (China), and an exhaustive evaluation existing algorithms applied to the BLH determination, persistent critical limitations are noticed, in particular over polluted episodes. Basically, under weak thermal convection with high aerosol loading, none of the retrieval algorithms is able to fully capture the diurnal cycle of the BLH due to pollutant insufficient vertical mixing in the boundary layer associated with the impact of gravity waves on the tropospheric structure. Subsequently, a new approach based on gravity wave theory (the cubic root gradient method: CRGM), is developed to overcome such weakness and accurately reproduce the fluctuations of the BLH under various atmospheric pollution conditions. Comprehensive evaluation of CRGM highlights its high performance in determining BLH from Lidar. In comparison with the existing retrieval algorithms, the CRGM potentially reduces related computational uncertainties and errors from BLH determination (strong increase of correlation coefficient from 0.44 to 0.91 and significant decrease of the root mean square error from 643 m to 142 m). Such newly developed technique is undoubtedly expected to contribute to improve the accuracy of air quality modelling and forecasting systems.

2017 ◽  
Vol 17 (10) ◽  
pp. 6215-6225 ◽  
Author(s):  
Ting Yang ◽  
Zifa Wang ◽  
Wei Zhang ◽  
Alex Gbaguidi ◽  
Nobuo Sugimoto ◽  
...  

Abstract. Predicting air pollution events in the low atmosphere over megacities requires a thorough understanding of the tropospheric dynamics and chemical processes, involving, notably, continuous and accurate determination of the boundary layer height (BLH). Through intensive observations experimented over Beijing (China) and an exhaustive evaluation of existing algorithms applied to the BLH determination, persistent critical limitations are noticed, in particular during polluted episodes. Basically, under weak thermal convection with high aerosol loading, none of the retrieval algorithms is able to fully capture the diurnal cycle of the BLH due to insufficient vertical mixing of pollutants in the boundary layer associated with the impact of gravity waves on the tropospheric structure. Consequently, a new approach based on gravity wave theory (the cubic root gradient method: CRGM) is developed to overcome such weakness and accurately reproduce the fluctuations of the BLH under various atmospheric pollution conditions. Comprehensive evaluation of CRGM highlights its high performance in determining BLH from lidar. In comparison with the existing retrieval algorithms, CRGM potentially reduces related computational uncertainties and errors from BLH determination (strong increase of correlation coefficient from 0.44 to 0.91 and significant decreases of the root mean square error from 643 to 142 m). Such a newly developed technique is undoubtedly expected to contribute to improving the accuracy of air quality modeling and forecasting systems.


2020 ◽  
Author(s):  
Ting Yang ◽  
zifa wang ◽  
wei zhang ◽  
Alex Gbaguidi ◽  
Nobuo Sugimoto

<p><span><span>Predicting air pollution events in the low atmosphere over megacities requires a thorough understanding of the tropospheric dynamics and chemical processes, involving, notably, continuous and accurate determination of the boundary layer height (BLH). Through intensive observations experimented over Beijing (China) and an exhaustive evaluation of existing algorithms applied to the BLH determination, persistent critical limitations are noticed, in particular during polluted episodes. Basically, under weak thermal convection with high aerosol loading, none of the retrieval algorithms is able to fully capture the diurnal cycle of the BLH due to insufficient vertical mixing of pollutants in the boundary layer associated with the impact of gravity waves on the tropospheric structure. Consequently, a new approach based on gravity wave theory (the cubic root gradient method: CRGM) is developed to overcome such weakness and accurately reproduce the fluctuations of the BLH under various atmospheric pollution conditions. Comprehensive evaluation of CRGM highlights its high performance in determining BLH from lidar. In comparison with the existing retrieval algorithms, CRGM potentially reduces related computational uncertainties and errors from BLH determination (strong increase of correlation coefficient from 0.44 to 0.91 and significant decreases of the root mean square error from 643 to 142 m). Such a newly developed technique is undoubtedly expected to contribute to improving the accuracy of air quality modeling and forecasting systems.</span></span></p>


2018 ◽  
Author(s):  
Tianning Su ◽  
Zhanqing Li ◽  
Ralph Kahn

Abstract. The frequent occurrence of severe air pollution episodes in China has raised great concerns with the public and scientific communities. Planetary boundary layer height (PBLH) is a key factor in the vertical mixing and dilution of near-surface pollutants. However, the relationship between PBLH and surface pollutants, especially particulate matter (PM) concentration, across the whole of China, is not yet well understood. We investigate this issue at ~ 1500 surface stations using PBLH derived from space-borne and ground-based lidar, and discuss the influence of topography and meteorological variables on the PBLH-PM relationship. A generally negative correlation is observed between PM and the PBLH, albeit varying greatly in magnitude with location and season. Correlations are much weaker over the highlands than plains regions, which may be associated with lower pollution levels and mountain breezes. The influence of horizontal transport on surface PM is considered as well, manifested as a negative correlation between surface PM and wind speed over the whole nation. Strong wind with clean upwind sources plays a dominant role in removing pollutants, and leads to weak PBLH-PM correlation. A ventilation rate is introduced to jointly consider horizontal and vertical dispersion, which has the largest impact on surface pollutant accumulation over the North China Plain. Aerosol absorption feedbacks also appear to affect the PBLH-PM relationship, as revealed via comparing air pollution in Beijing and Hong Kong. Absorbing aerosols in high concentrations likely contribute to the significant PBLH-PM correlation over the North China Plain (e.g., during winter). As major precursor emissions for secondary aerosols, sulfur dioxide, nitrogen dioxide, and carbon monoxide have similar negative responses to increased PBLH, whereas ozone is positively correlated with PBLH over most regions, which may be caused by heterogeneous reactions and photolysis rates.


2019 ◽  
Vol 172 (3) ◽  
pp. 435-455 ◽  
Author(s):  
Junhong Lee ◽  
Je-Woo Hong ◽  
Keunmin Lee ◽  
Jinkyu Hong ◽  
Erik Velasco ◽  
...  

2009 ◽  
Vol 137 (1) ◽  
pp. 414-432 ◽  
Author(s):  
F. Couvreux ◽  
F. Guichard ◽  
P. H. Austin ◽  
F. Chen

Abstract Mesoscale water vapor heterogeneities in the boundary layer are studied within the context of the International H2O Project (IHOP_2002). A significant portion of the water vapor variability in the IHOP_2002 occurs at the mesoscale, with the spatial pattern and the magnitude of the variability changing from day to day. On 14 June 2002, an atypical mesoscale gradient is observed, which is the reverse of the climatological gradient over this area. The factors causing this water vapor variability are investigated using complementary platforms (e.g., aircraft, satellite, and in situ) and models. The impact of surface flux heterogeneities and atmospheric variability are evaluated separately using a 1D boundary layer model, which uses surface fluxes from the High-Resolution Land Data Assimilation System (HRLDAS) and early-morning atmospheric temperature and moisture profiles from a mesoscale model. This methodology, based on the use of robust modeling components, allows the authors to tackle the question of the nature of the observed mesoscale variability. The impact of horizontal advection is inferred from a careful analysis of available observations. By isolating the individual contributions to mesoscale water vapor variability, it is shown that the observed moisture variability cannot be explained by a single process, but rather involves a combination of different factors: the boundary layer height, which is strongly controlled by the surface buoyancy flux, the surface latent heat flux, the early-morning heterogeneity of the atmosphere, horizontal advection, and the radiative impact of clouds.


2018 ◽  
Vol 18 (21) ◽  
pp. 15921-15935 ◽  
Author(s):  
Tianning Su ◽  
Zhanqing Li ◽  
Ralph Kahn

Abstract. The frequent occurrence of severe air pollution episodes in China has been a great concern and thus the focus of intensive studies. Planetary boundary layer height (PBLH) is a key factor in the vertical mixing and dilution of near-surface pollutants. However, the relationship between PBLH and surface pollutants, especially particulate matter (PM) concentration across China, is not yet well understood. We investigate this issue at ∼1600 surface stations using PBLH derived from space-borne and ground-based lidar, and discuss the influence of topography and meteorological variables on the PBLH–PM relationship. Albeit the PBLH–PM correlations are roughly negative for most cases, their magnitude, significance, and even sign vary considerably with location, season, and meteorological conditions. Weak or even uncorrelated PBLH–PM relationships are found over clean regions (e.g., Pearl River Delta), whereas nonlinearly negative responses of PM to PBLH evolution are found over polluted regions (e.g., North China Plain). Relatively strong PBLH–PM interactions are found when the PBLH is shallow and PM concentration is high, which typically corresponds to wintertime cases. Correlations are much weaker over the highlands than the plains regions, which may be associated with lighter pollution loading at higher elevations and contributions from mountain breezes. The influence of horizontal transport on surface PM is considered as well, manifested as a negative correlation between surface PM and wind speed over the whole nation. Strong wind with clean upwind air plays a dominant role in removing pollutants, and leads to obscure PBLH–PM relationships. A ventilation rate is used to jointly consider horizontal and vertical dispersion, which has the largest impact on surface pollutant accumulation over the North China Plain. As such, this study contributes to improved understanding of aerosol–planetary boundary layer (PBL) interactions and thus our ability to forecast surface air pollution.


Sign in / Sign up

Export Citation Format

Share Document