Decreasing Asian summer monsoon intensity after 1860 AD in the global warming epoch

2012 ◽  
Vol 39 (7-8) ◽  
pp. 2079-2088 ◽  
Author(s):  
Hai Xu ◽  
Yetang Hong ◽  
Bin Hong
2009 ◽  
Vol 28 (3-4) ◽  
pp. 345-353 ◽  
Author(s):  
Weiguo Zhang ◽  
Lizhong Yu ◽  
Min Lu ◽  
Xiangmin Zheng ◽  
Junfeng Ji ◽  
...  

2014 ◽  
Vol 10 (5) ◽  
pp. 1803-1816 ◽  
Author(s):  
J.-J. Yin ◽  
D.-X. Yuan ◽  
H.-C. Li ◽  
H. Cheng ◽  
T.-Y. Li ◽  
...  

Abstract. This paper focuses on the climate variability in central China since AD 1300, involving: (1) a well-dated, 1.5-year resolution stalagmite δ18O record from Lianhua Cave, central China (2) links of the δ18O record with regional dry–wet conditions, monsoon intensity, and temperature over eastern China (3) correlations among drought events in the Lianhua record, solar irradiation, and ENSO (El Niño–Southern Oscillation) variation. We present a highly precise, 230Th / U-dated, 1.5-year resolution δ18O record of an aragonite stalagmite (LHD1) collected from Lianhua Cave in the Wuling Mountain area of central China. The comparison of the δ18O record with the local instrumental record and historical documents indicates that (1) the stalagmite δ18O record reveals variations in the summer monsoon intensity and dry–wet conditions in the Wuling Mountain area. (2) A stronger East Asian summer monsoon (EASM) enhances the tropical monsoon trough controlled by ITCZ (Intertropical Convergence Zone), which produces higher spring quarter rainfall and isotopically light monsoonal moisture in the central China. (3) The summer quarter/spring quarter rainfall ratio in central China can be a potential indicator of the EASM strength: a lower ratio corresponds to stronger EASM and higher spring rainfall. The ratio changed from <1 to >1 after 1950, reflecting that the summer quarter rainfall of the study area became dominant under stronger influence of the Northwestern Pacific High. Eastern China temperatures varied with the solar activity, showing higher temperatures under stronger solar irradiation, which produced stronger summer monsoons. During Maunder, Dalton and 1900 sunspot minima, more severe drought events occurred, indicating a weakening of the summer monsoon when solar activity decreased on decadal timescales. On an interannual timescale, dry conditions in the study area prevailed under El Niño conditions, which is also supported by the spectrum analysis. Hence, our record illustrates the linkage of Asian summer monsoon precipitation to solar irradiation and ENSO: wetter conditions in the study area under stronger summer monsoon during warm periods, and vice versa. During cold periods, the Walker Circulation will shift toward the central Pacific under El Niño conditions, resulting in a further weakening of Asian summer monsoons.


2021 ◽  
pp. 1-69
Author(s):  
Gloria L Manney ◽  
Michelle L Santee ◽  
Zachary D Lawrence ◽  
Krzysztof Wargan ◽  
Michael J Schwartz

AbstractA comprehensive investigation of the climatology of and interannual variability and trends in the Asian summer monsoon anticyclone (ASMA) is presented, based on a novel area and moments analysis. Moments include centroid location, aspect ratio, angle, and “excess kurtosis” (measuring how far the shape is from elliptical) for an equivalent ellipse with the same area as the ASMA. Key results are robust among the three modern reanalyses studied. The climatological ASMA is nearly elliptical, with its major axis aligned along its centroid latitude and a typical aspect ratio of ~5–8. The ASMA centroid shifts northward with height, northward and westward during development, and in the opposite direction as it weakens. New evidence finding no obvious climatological bimodality in the ASMA reinforces similar suggestions from previous studies using modern reanalyses. Most trends in ASMA moments are not statistically significant. ASMA area and duration, however, increased significantly during 1979–2018; the 1958–2018 record analyzed for one reanalysis suggests that these trends may have accelerated in recent decades. ASMA centroid latitude is significantly positively (negatively) correlated with subtropical jet core latitude (altitude), and significantly negatively correlated with concurrent ENSO; these results are consistent with and extend previous work relating monsoon intensity, ENSO, and jet shifts. ASMA area is significantly positively correlated with the MEI ENSO index two months previously. These results improve our understanding of the ASMA using consistently defined diagnostics of its size, geometry, interannual variability, and trends that have not previously been analyzed.


2008 ◽  
Vol 3 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Koji Dairaku ◽  
◽  
Seita Emori ◽  
Hironori Higashi ◽  

Climate-related disasters are a serious problem in Asia. Advances in the understanding of meteorology and in the development of monitoring and forecasting systems have enhanced early warning systems, contributing immensely to reducing fatalities resulting from typhoons, cyclones, and floods. The frequency of extreme events causing water-related disasters has increased, however, over the last decade and may grow in the future due to anthropogenic activity. The sections that follow introduce two recent efforts in hydrologic projection in Asia. Time-slice ensemble experiments using a high-resolution (T106) atmospheric general circulation model (AGCM) on the earth simulator revealed changes in the South Asian summer monsoon resulting from climate change. Model results under global warming conditions suggest increases in mean and extreme precipitation during the Asian summer monsoon. increases generally attributed to greater atmospheric moisture content. a thermodynamic change. Dynamic changes limit the intensification of mean precipitation. Enhanced extreme precipitation over land in South Asia arises from dynamic rather than thermodynamic changes. The impact of global warming on heavy precipitation features and flood risks in the Tama River basin in Japan is addressed using 12 atmosphere-ocean coupled general circulation models (AOGCMs). Multi-model ensemble average 200-year quantiles in Tokyo from 2050 to 2300 under Intergovernmental Panel on Climate Changes (IPCC) Special Reports on Emissions Scenarios (SRES) A1B scenario climate conditions were 1.07-1.20 times greater than that under present climate conditions. A 200-year quantile extreme event in the present occurs in much shorter return periods in the A1B scenario. High-water discharge in the basin rose by 10%-26% and flood volume increased by 46%-131% for precipitation in a 200-year return period. The risk of flooding in the basin is thus, even though the increase of extreme precipitation is not substantial, projected to be much higher than that presently estimated.


2010 ◽  
Vol 23 (24) ◽  
pp. 6696-6705 ◽  
Author(s):  
Jianping Li ◽  
Zhiwei Wu ◽  
Zhihong Jiang ◽  
Jinhai He

Abstract The Indian summer monsoon (ISM) tends to be intensified in a global-warming scenario, with a weakened linkage with El Niño–Southern Oscillation (ENSO), but how the East Asian summer monsoon (EASM) responds is still an open question. This study investigates the responses of the EASM from observations, theoretical, and modeling perspectives. Observational and theoretical evidence demonstrates that, in contrast to the dramatic global-warming trend within the past 50 years, the regional-mean EASM rainfall is basically dominated by considerable interannual-to-decadal fluctuations, concurrent with enhanced precipitation over the middle and lower reaches of the Yangtze River and over southern Japan and suppressed rainfall amount over the South China and Philippine Seas. From 1958 through 2008, the EASM circulation exhibits a southward shift in its major components (the subtropical westerly jet stream, the western Pacific Ocean subtropical high, the subtropical mei-yu–baiu–changma front, and the tropical monsoon trough). Such a southward shift is very likely or in part due to the meridional asymmetric warming with the most prominent surface warming in the midhigh latitudes (45°–60°N), which induces a weakened meridional thermal contrast over eastern Asia. Another notable feature is the enhanced ENSO–EASM relationship within the past 50 years, which is opposite to the ISM. Fourteen state-of-the-art coupled models from the Intergovernmental Panel on Climate Change show that the EASM strength does not respond with any pronounced trend to the global-warming “A1B” forcing scenario (with an atmospheric CO2 concentration of 720 ppm) but shows interannual-to-decadal variations in the twenty-first century (2000–99). These results indicate that the primary response of the EASM to a warming climate may be a position change instead of an intensity change, and such position change may lead to spatial coexistence of floods and droughts over eastern Asia as has been observed in the past 50 years.


2019 ◽  
Vol 46 (7) ◽  
pp. 3927-3935 ◽  
Author(s):  
Sean P. Bryan ◽  
Konrad A. Hughen ◽  
Kristopher B. Karnauskas ◽  
J. Thomas Farrar

Sign in / Sign up

Export Citation Format

Share Document