Precipitation variability in the north fringe of East Asian Summer Monsoon during the past millennium and its possible driving factors

2019 ◽  
Vol 53 (5-6) ◽  
pp. 2587-2602 ◽  
Author(s):  
Ting Hua ◽  
Eduardo Zorita ◽  
Xunming Wang ◽  
Ninglian Wang ◽  
Caixia Zhang
2018 ◽  
Vol 45 (15) ◽  
pp. 7711-7718 ◽  
Author(s):  
Richard Ching Wa Cheung ◽  
Moriaki Yasuhara ◽  
Briony Mamo ◽  
Kota Katsuki ◽  
Koji Seto ◽  
...  

2015 ◽  
Vol 28 (7) ◽  
pp. 2873-2883 ◽  
Author(s):  
Shinji Matsumura ◽  
Shiori Sugimoto ◽  
Tomonori Sato

Abstract The summer western Pacific subtropical high (WPSH) has intensified during the past three decades. However, the underlying mechanism is not yet well understood. Here, it is shown that baiu rainband activity in midsummer, which is part of the East Asian summer monsoon, plays an important role in recent intensification in the WPSH along the baiu rainband. In contrast with the WPSH, the summer Okhotsk high, which is located to the north of the baiu rainband, has weakened during the past three decades. The north–south contrasting changes between the two highs reflect a response to northward-moved and enhanced baiu heating, which intensifies the upper-tropospheric ridge, resulting in the baroclinic intensification of the WPSH. Regional climate model experiments also support the observational analysis. Therefore, baiu convective activity in midsummer can act as a major driver for the WPSH intensification. The results here suggest that the mechanism intensifying the summer North Pacific subtropical high clearly differs between the western and eastern Pacific.


2013 ◽  
Vol 26 (19) ◽  
pp. 7662-7675 ◽  
Author(s):  
Kyong-Hwan Seo ◽  
Jung Ok ◽  
Jun-Hyeok Son ◽  
Dong-Hyun Cha

Abstract Future changes in the East Asian summer monsoon (EASM) are estimated from historical and Representative Concentration Pathway 6.0 (RCP6) experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The historical runs show that, like the CMIP3 models, the CMIP5 models produce slightly smaller precipitation. A moisture budget analysis illustrates that this precipitation deficit is due to an underestimation in evaporation and ensuing moisture flux convergence. Of the two components of the moisture flux convergence (i.e., moisture convergence and horizontal moist advection), moisture convergence associated with mass convergence is underestimated to a greater degree. Precipitation is anticipated to increase by 10%–15% toward the end of the twenty-first century over the major monsoonal front region. A statistically significant increase is predicted to occur mostly over the Baiu region and to the north and northeast of the Korean Peninsula. This increase is attributed to an increase in evaporation and moist flux convergence (with enhanced moisture convergence contributing the most) induced by the northwestward strengthening of the North Pacific subtropical high (NPSH), a characteristic feature of the future EASM that occurred in CMIP5 simulations. Along the northern and northwestern flank of the strengthened NPSH, intensified southerly or southwesterly winds lead to the increase in moist convergence, enhancing precipitation over these areas. However, future precipitation over the East China Sea is projected to decrease. In the EASM domain, a local mechanism prevails, with increased moisture and moisture convergence leading to a greater increase in moist static energy in the lower troposphere than in the upper troposphere, reducing tropospheric stability.


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 90
Author(s):  
Yongxiao Liang ◽  
Pengfeng Xiao

The effects of urbanization over eastern China on the East Asian summer monsoon (EASM) under different sea surface temperature background are compared using a Community Atmosphere Model (CAM5.1). Experiments of urbanization investigated by comparing two climate simulations with and without urban land cover under both positive and negative phases of Pacific Decadal Oscillation (PDO) show the spatial distribution of precipitation with ‘southern flood and northern drought’ and weakening status of EASM. The climate effect of urbanization in eastern China is significantly different from north to south. Anomalous vertical ascending motion due to the role of urbanization in the south of 30° N have induced an increase in convective available potential energy (CAPE) and precipitation increase over southern China. At the same time, the downward vertical motion occurs in the north of 30° N which cause warming over northern China. Due to the anti-cyclonic anomalies in the upper and lower layers of the north, the monsoon circulation is weakened which can reduce the precipitation. However, urbanization impact under various phases of PDO show different effect. In the 1956–1970 urbanization experiments of negative PDO phase, the downward vertical motion and anti-cyclonic anomalies in the north of 30° N are also weaker than that of positive phase of PDO in 1982–1996. In terms of this situation, the urbanization experiments of negative phase of PDO reveal that the range of the warming area over the north of 40° N is small, and the warming intensity is weak, but the precipitation change is more obvious compared with the background of positive phase of PDO.


2010 ◽  
Vol 23 (24) ◽  
pp. 6696-6705 ◽  
Author(s):  
Jianping Li ◽  
Zhiwei Wu ◽  
Zhihong Jiang ◽  
Jinhai He

Abstract The Indian summer monsoon (ISM) tends to be intensified in a global-warming scenario, with a weakened linkage with El Niño–Southern Oscillation (ENSO), but how the East Asian summer monsoon (EASM) responds is still an open question. This study investigates the responses of the EASM from observations, theoretical, and modeling perspectives. Observational and theoretical evidence demonstrates that, in contrast to the dramatic global-warming trend within the past 50 years, the regional-mean EASM rainfall is basically dominated by considerable interannual-to-decadal fluctuations, concurrent with enhanced precipitation over the middle and lower reaches of the Yangtze River and over southern Japan and suppressed rainfall amount over the South China and Philippine Seas. From 1958 through 2008, the EASM circulation exhibits a southward shift in its major components (the subtropical westerly jet stream, the western Pacific Ocean subtropical high, the subtropical mei-yu–baiu–changma front, and the tropical monsoon trough). Such a southward shift is very likely or in part due to the meridional asymmetric warming with the most prominent surface warming in the midhigh latitudes (45°–60°N), which induces a weakened meridional thermal contrast over eastern Asia. Another notable feature is the enhanced ENSO–EASM relationship within the past 50 years, which is opposite to the ISM. Fourteen state-of-the-art coupled models from the Intergovernmental Panel on Climate Change show that the EASM strength does not respond with any pronounced trend to the global-warming “A1B” forcing scenario (with an atmospheric CO2 concentration of 720 ppm) but shows interannual-to-decadal variations in the twenty-first century (2000–99). These results indicate that the primary response of the EASM to a warming climate may be a position change instead of an intensity change, and such position change may lead to spatial coexistence of floods and droughts over eastern Asia as has been observed in the past 50 years.


Sign in / Sign up

Export Citation Format

Share Document