Differential expression of CRABP II, psoriasin and cytokeratin 1 mRNA in human skin diseases

1996 ◽  
Vol 288 (8) ◽  
pp. 426-430 ◽  
Author(s):  
B. Algermissen ◽  
Jörg Sitzmann ◽  
P. LeMotte ◽  
Beate Czarnetzki
1996 ◽  
Vol 288 (8) ◽  
pp. 426-430 ◽  
Author(s):  
Bernd Algermissen ◽  
Jörg Sitzmann ◽  
Peter LeMotte ◽  
Beate Czarnetzki

1994 ◽  
Vol 103 (6) ◽  
pp. 785-790 ◽  
Author(s):  
Mark S Eller ◽  
Daniel D Harkness ◽  
J.a.g. Bhawan ◽  
Barbara A Gilchrest

Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 76
Author(s):  
Aleksey V. Tarasov ◽  
Ekaterina I. Khamzina ◽  
Maria A. Bukharinova ◽  
Natalia Yu. Stozhko

In contemporary bioanalysis, monitoring the antioxidant activity (AOA) of the human skin is used to assess stresses, nutrition, cosmetics, and certain skin diseases. Non-invasive methods for skin AOA monitoring have certain advantages over invasive methods, namely cost-effectiveness, lower labor intensity, reduced risk of infection, and obtaining results in the real-time mode. This study presents a new flexible potentiometric sensor system (FPSS) for non-invasive determination of the human skin AOA, which is based on flexible film electrodes (FFEs) and membrane containing a mediator ([Fe(CN)6]3–/4–). Low-cost available materials and scalable technologies were used for FFEs manufacturing. The indicator FFE was fabricated based on polyethylene terephthalate (PET) film and carbon veil (CV) by single-sided hot lamination. The reference FFE was fabricated based on PET film and silver paint by using screen printing, which was followed by the electrodeposition of precipitate containing a mixture of silver chloride and silver ferricyanide (SCSF). The three-electrode configuration of the FPSS, including two indicator FFEs (CV/PET) and one reference FFE (SCSF/Ag/PET), has been successfully used for measuring the skin AOA and evaluating the impact of phytocosmetic products. FPSS provides reproducible (RSD ≤ 7%) and accurate (recovery of antioxidants is almost 100%) results, which allows forecasting its broad applicability in human skin AOA monitoring as well as for evaluating the effectiveness of topically and orally applied antioxidants.


1994 ◽  
Vol 8 (1) ◽  
pp. 71
Author(s):  
H. Koizumi ◽  
H. Tanaka ◽  
T. Kartasova ◽  
A. Ohkawara ◽  
T. Kuroki

Cosmetics ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 45 ◽  
Author(s):  
Dorota Dobler ◽  
Thomas Schmidts ◽  
Sören Wildenhain ◽  
Ilona Seewald ◽  
Michael Merzhäuser ◽  
...  

Human skin is a complex ecosystem and is host to a large number of microorganisms. When the bacterial ecosystem is balanced and differentiated, skin remains healthy. However, the use of cosmetics can change this balance and promote the appearance of skin diseases. The skin’s microorganisms can utilize some cosmetic components, which either promote their growth, or produce metabolites that influence the skin environment. In this study, we tested the ability of the Malassezia species and some bacterial strains to assimilate substances frequently used in dermal formulations. The growth capability of microorganisms was determined and their lipase activity was analyzed. The growth of all Malassezia spp. in the presence of free acids, free acid esters, and fatty alcohols with a fatty chain length above 12 carbon atoms was observed. No growth was observed in the presence of fatty alcohol ethers, secondary fatty alcohols, paraffin- and silicon-based substances, polymers, polyethylene glycols, quaternary ammonium salts, hydroxy fatty acid esters, or fatty acids and fatty acid esters with a fatty chain length shorter than 12 carbon atoms. The hydrolysis of esters by Malassezia lipases was detected using High Performance Thin Layer Chromatography (HPTLC). The production of free fatty acids as well as fatty alcohols was observed. The growth promotion or inhibition of bacterial strains was only found in the presence of a few ingredients. Based on these results, formulations containing microbiome inert ingredients were developed.


1991 ◽  
Vol 2 (3) ◽  
pp. 219
Author(s):  
Hiroko Koizumi ◽  
Tadamichi Shimizu ◽  
Kazuko Sato ◽  
Akira Ohkawara ◽  
Toshio Kuroki

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Katsuhiko Tsuchida ◽  
Masaki Kobayashi

AbstractOxidative stress is associated with photoaging of the skin as well as with skin cancer, and is therefore, critical to monitor. Ultraweak photon emission (UPE) is extremely weak light generated during the oxidative process in the living body and has been used as a non-invasive and label-free marker for the evaluation of oxidative stress. However, the mechanism of UPE generation is not clear. Therefore, we aimed to elucidate the molecular mechanism underlying UPE generation by analyzing the spectra of UPE generated from biomolecules in the skin during ultraviolet A (UVA) exposure. The spectra of UVA-induced UPE generated from linoleic acid, linolenic acid, elastin, phospholipids, and 5,6-dihydroxyindole-2-carboxylic acid were measured, and the spectrum of human skin tissue was also obtained. The spectral patterns varied for the different biomolecules and the peaks were distinct from those of the skin tissue. These results suggested that the UPE generated from skin tissue is a collection of light emitted by biomolecules. Moreover, we proposed that UPE is generated through a photosensitization reaction and energy transfer. The identified characteristic spectral patterns of UPE can be useful to elucidate UVA-induced oxidative stress in the skin, with implications for prevention and treatment of photoaging and skin diseases.


Sign in / Sign up

Export Citation Format

Share Document