Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays

2004 ◽  
Vol 242 (7) ◽  
pp. 587-596 ◽  
Author(s):  
Florian Gekeler ◽  
Karin Kobuch ◽  
Hartmut Normann Schwahn ◽  
Alfred Stett ◽  
Kei Shinoda ◽  
...  
2012 ◽  
Vol 2 (2) ◽  
pp. 111-117 ◽  
Author(s):  
Se Joon Woo ◽  
Su Jin Kim ◽  
Jing Ai Zhou ◽  
Eui Tae Kim ◽  
Jong-Mo Seo ◽  
...  

2020 ◽  
Vol 123 (1) ◽  
pp. 259-276 ◽  
Author(s):  
Kristin N. Hageman ◽  
Margaret R. Chow ◽  
Dale Roberts ◽  
Peter J. Boutros ◽  
Angela Tooker ◽  
...  

From animal experiments by Cohen and Suzuki et al. in the 1960s to the first-in-human clinical trials now in progress, prosthetic electrical stimulation targeting semicircular canal branches of the vestibular nerve has proven effective at driving directionally appropriate vestibulo-ocular reflex eye movements, postural responses, and perception. That work was considerably facilitated by the fact that all hair cells and primary afferent neurons in each canal have the same directional sensitivity to head rotation, the three canals’ ampullary nerves are geometrically distinct from one another, and electrically evoked three-dimensional (3D) canal-ocular reflex responses approximate a simple vector sum of linearly independent components representing relative excitation of each of the three canals. In contrast, selective prosthetic stimulation of the utricle and saccule has been difficult to achieve, because hair cells and afferents with many different directional sensitivities are densely packed in those endorgans and the relationship between 3D otolith-ocular reflex responses and the natural and/or prosthetic stimuli that elicit them is more complex. As a result, controversy exists regarding whether selective, controllable stimulation of electrically evoked otolith-ocular reflexes (eeOOR) is possible. Using micromachined, planar arrays of electrodes implanted in the labyrinth, we quantified 3D, binocular eeOOR responses to prosthetic electrical stimulation targeting the utricle, saccule, and semicircular canals of alert chinchillas. Stimuli delivered via near-bipolar electrode pairs near the maculae elicited sustained ocular countertilt responses that grew reliably with pulse rate and pulse amplitude, varied in direction according to which stimulating electrode was employed, and exhibited temporal dynamics consistent with responses expected for isolated macular stimulation. NEW & NOTEWORTHY As the second in a pair of papers on Binocular 3D Otolith-Ocular Reflexes, this paper describes new planar electrode arrays and vestibular prosthesis architecture designed to target the three semicircular canals and the utricle and saccule. With this technological advancement, electrically evoked otolith-ocular reflexes due to stimulation via utricle- and saccule-targeted electrodes were recorded in chinchillas. Results demonstrate advances toward achieving selective stimulation of the utricle and saccule.


1977 ◽  
Vol 47 (3) ◽  
pp. 366-379 ◽  
Author(s):  
W. Jann Brown ◽  
Thomas L. Babb ◽  
Henry V. Soper ◽  
Jeffrey P. Lieb ◽  
Carlos A. Ottino ◽  
...  

✓ Light and electron microscopic analyses were carried out on the stimulated and unstimulated paravermal cortices of six rhesus monkeys that had electrodes implanted on their cerebella for 2 months. The electrodes and the stimulation regime (10 p.p.s.: 8 min on, 8 min off) were similar to those used to stimulate the human cerebellum for treatment of certain neurological disorders. Mere presence of the electrode array in the posterior fossa for 2 months resulted in some meningeal thickening, attenuation of the molecular layer, and loss of Purkinje cells immediately beneath the electrode array. There was no evidence of scarring. After 205 hours of stimulation (7.38 × 106 pulses) over 18 days, a charge of 0.5 µC/ph or estimated charge density of 7.4 µC/sq cm/ph resulted in no damage to the cerebellum attributable to electrical stimulation per se. Such a charge/phase is about five times the threshold for evocation of cerebellar efferent activity, and might be considered “safe” for stimulation of human cerebellum. Charge density/phase and charge/phase were directly related to increased cerebellar injury in the six other cerebellar cortices stimulated. Leptomeningeal thickening increased with increased charge density. Injury included severe molecular layer attenuation, ongoing destruction of Purkinje cells, gliosis, ongoing degeneration of myelinated axons, collagen intrusion, and increased levels of local polysaccharides. In all cases, even with damage that destroyed all conducting elements beneath the electrodes, there was no damage further than 1 to 2 mm from the edges of the electrode arrays.


1997 ◽  
Vol 225 (1) ◽  
pp. 13-16 ◽  
Author(s):  
Alan Y Chow ◽  
Vincent Y Chow

2006 ◽  
Vol 95 (6) ◽  
pp. 3311-3327 ◽  
Author(s):  
Chris Sekirnjak ◽  
Pawel Hottowy ◽  
Alexander Sher ◽  
Wladyslaw Dabrowski ◽  
A. M. Litke ◽  
...  

Existing epiretinal implants for the blind are designed to electrically stimulate large groups of surviving retinal neurons using a small number of electrodes with diameters of several hundred micrometers. To increase the spatial resolution of artificial sight, electrodes much smaller than those currently in use are desirable. In this study, we stimulated and recorded ganglion cells in isolated pieces of rat, guinea pig, and monkey retina. We used microfabricated hexagonal arrays of 61 platinum disk electrodes with diameters between 6 and 25 μm, spaced 60 μm apart. Charge-balanced current pulses evoked one or two spikes at latencies as short as 0.2 ms, and typically only one or a few recorded ganglion cells were stimulated. Application of several synaptic blockers did not abolish the evoked responses, implying direct activation of ganglion cells. Threshold charge densities were typically <0.1 mC/cm2 for a pulse duration of 100 μs, corresponding to charge thresholds of <100 pC. Stimulation remained effective after several hours and at high frequencies. To show that closely spaced electrodes can elicit independent ganglion cell responses, we used the multielectrode array to stimulate several nearby ganglion cells simultaneously. From these data, we conclude that electrical stimulation of mammalian retina with small-diameter electrode arrays is achievable and can provide high temporal and spatial precision at low charge densities. We review previous epiretinal stimulation studies and discuss our results in the context of 32 other publications, comparing threshold parameters and safety limits.


Sign in / Sign up

Export Citation Format

Share Document