scholarly journals YAP regulates porcine skin-derived stem cells self-renewal partly by repressing Wnt/β-catenin signaling pathway

Author(s):  
Hong-Chen Yan ◽  
Yu Sun ◽  
Ming-Yu Zhang ◽  
Shu-Er Zhang ◽  
Jia-Dong Sun ◽  
...  
2020 ◽  
Vol 34 (4) ◽  
pp. 5128-5143
Author(s):  
Lilei Peng ◽  
Yang Ming ◽  
Ling Zhang ◽  
Jie Zhou ◽  
Wei Xiang ◽  
...  

2021 ◽  
Author(s):  
Hong-Chen Yan ◽  
Yu Sun ◽  
Ming-Yu Zhang ◽  
Shu-Er Zhang ◽  
Jia-Dong Sun ◽  
...  

Abstract Background Skin-derived stem cells (SDSCs) are a class of adult stem cells (ASCs) that have the ability to self-renew and differentiate. The regulation mechanisms involved in the differentiation of ASCs is a hot topic. Porcine models have close similarities to humans and porcine SDSCs (pSDSCs) offer an ideal in vitro model to investigate human ASCs. To date, studies concerning the role of yes-associated protein (YAP) in ASCs are limited, and the mechanism of its influence on self-renewal and differentiation of ASCs remain unclear. In this paper, we explore the link between the transcriptional regulator YAP and the fate of pSDSCs. Results We found that YAP promotes the pluripotent state of pSDSCs by maintaining the high expression of the pluripotency genes Sox2, Oct4. The overexpression of YAP prevented the differentiation of pSDSCs and the depletion of YAP by small interfering RNA (siRNAs) suppressed the self-renewal of pSDSCs. In addition, we found that YAP regulates the fate of pSDSCs through a mechanism related to the Wnt/β-catenin signaling pathway. When an activator of the Wnt/β-catenin signaling pathway, CHIR99021, was added to pSDSCs overexpressing YAP the ability of pSDSCs to differentiate was partially restored. Conversely, when XAV939 an inhibitor of Wnt/β-catenin signaling pathway, was added to YAP knockdown pSDSCs a higher self-renewal ability resulted. Conclusions our results suggested that, YAP and the Wnt/β-catenin signaling pathway interact to regulate the fate of pSDSCs.


2019 ◽  
Vol 51 (11) ◽  
pp. 1-20 ◽  
Author(s):  
Jun-Cheng Guo ◽  
Yi-Jun Yang ◽  
Jin-Fang Zheng ◽  
Jian-Quan Zhang ◽  
Min Guo ◽  
...  

AbstractHepatocellular carcinoma (HCC) is a major cause of cancer-related deaths, but its molecular mechanisms are not yet well characterized. Long noncoding RNAs (lncRNAs) play crucial roles in tumorigenesis, including that of HCC. However, the role of homeobox A11 antisense (HOXA11-AS) in determining HCC stem cell characteristics remains to be explained; hence, this study aimed to investigate the effects of HOXA11-AS on HCC stem cell characteristics. Initially, the expression patterns of HOXA11-AS and HOXA11 in HCC tissues, cells, and stem cells were determined. HCC stem cells, successfully sorted from Hep3B and Huh7 cells, were transfected with short hairpin or overexpression plasmids for HOXA11-AS or HOXA11 overexpression and depletion, with an aim to study the influences of these mediators on the self-renewal, proliferation, migration, and tumorigenicity of HCC stem cells in vivo. Additionally, the potential relationship and the regulatory mechanisms that link HOXA11-AS, HOXA11, and the Wnt signaling pathway were explored through treatment with Dickkopf-1 (a Wnt signaling pathway inhibitor). HCC stem cells showed high expression of HOXA11-AS and low expression of HOXA11. Both HOXA11-AS silencing and HOXA11 overexpression suppressed the self-renewal, proliferation, migration, and tumorigenicity of HCC stem cells in vivo, as evidenced by the decreased expression of cancer stem cell surface markers (CD133 and CD44) and stemness-related transcription factors (Nanog, Sox2, and Oct4). Moreover, silencing HOXA11-AS inactivated the Wnt signaling pathway by decreasing the methylation level of the HOXA11 promoter, thereby inhibiting HCC stem cell characteristics. Collectively, this study suggested that HOXA11-AS silencing exerts an antitumor effect, suppressing HCC development via Wnt signaling pathway inactivation by decreasing the methylation level of the HOXA11 promoter.


2019 ◽  
Vol 234 (12) ◽  
pp. 23461-23474 ◽  
Author(s):  
Jun‐Cheng Guo ◽  
Yi‐Jun Yang ◽  
Jian‐Quan Zhang ◽  
Min Guo ◽  
Li Xiang ◽  
...  

2017 ◽  
Vol 09 (06) ◽  
Author(s):  
Tetsuzo Tauchi ◽  
Seiichi Okabe ◽  
Seiichiro Katagiri ◽  
Yuko Tanaka ◽  
Kaoru Tohyama ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3381-3381 ◽  
Author(s):  
Akil A. Merchant ◽  
Giselle A. Joseph ◽  
Evan Jones ◽  
Tara Lin ◽  
B. Doug Smith ◽  
...  

Abstract The Hedgehog (Hh) signaling pathway is critical for normal development and dictates the self-renewal, proliferation and differentiation of normal stem cells and progenitors. Aberrant reactivation of Hh signaling has been described in a wide variety of human cancers and its role in normal stem cells suggest that pathway dysregulation contributes to oncogenesis and influences the cell fate decisions in cancer stem cells (CSC). Like their normal counterparts, CSC appear to undergo self-renewal as well as give rise to differentiated progeny, and these properties implicate that CSC are responsible for continual tumor cell production that underlies the initiation, maintenance and progression of clinical disease. Myeloid leukemias have long served as the model system for human CSC, but the cellular processes responsible for regulating these rare biologically distinct cell populations have remained unclear. We hypothesized that Hh pathway activation contributes to the pathogenesis of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) and studied Hh signaling in these settings. Using both RT-PCR for pathway components and a Gli1 reporter assay, we have found that Hh signaling is active in several human AML derived cell lines (Kasumi-1, KG1, KG1a) and primary AML and MDS samples. Approximately 80% (19/24) of primary AML samples tested express the downstream effectors GLI1 or GLI2 indicative of active Hh signaling. Furthermore, inhibition of Hh signaling with the naturally derived SMOOTHENED antagonist cyclopamine reduces the clonogenic growth of KG1 cells implicating the pathway in self-renewal. In contrast, cyclopamine failed to affect colony growth in the HL-60 cell line that lacks expression of Hh pathway signaling components, confirming that the effect of Hh inhibition is specific. In addition, the ectopic expression of Gli1 in KG1 cells partially rescued the effect of cyclopamine on colony formation further demonstrating the specific nature of this compound. We also studied normal CD34+ bone marrow cells and found that they expressed components of Hh pathway by RT-PCR. However, in contrast to KG1 cells, cyclopamine had little effect on the recovery of either normal hematopoietic progenitors or stem cells in an in vitro long-term culture assay. Therefore, it appears that Hh inhibition may preferentially inhibit myeloid leukemias. We further studied the role of Hh pathway activation on normal hematopoiesis and developed a transgenic mouse model in which SMOOTHENED is conditionally over-expressed in the myeloid lineage via Cre recombinase activity regulated by the Lysozyme promoter. Analysis of these mice demonstrated only subtle changes in peripheral blood counts, but further analysis of cells expressing the transgene revealed a significant reduction in the number of mature myeloid cells. This was confirmed by analyzing blood cells for the granulocyte marker Gr1 and pan-myeloid marker Mac1, both of which were significantly reduced in the SMOOTHENED over-expressing cells. These defects are reminiscent of MDS and further suggest that the Hh signaling pathway plays a role in normal hematopoiesis. Therefore, aberrant Hh pathway activation is a feature of myeloid leukemias and inhibitors such as cyclopamine may have a therapeutic role in the treatment of AML and MDS.


2020 ◽  
Vol 472 ◽  
pp. 70-80 ◽  
Author(s):  
Nuozhou Wang ◽  
Ming-yue Li ◽  
Yi Liu ◽  
Jianqing Yu ◽  
Jianwei Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document