Oxygen uptake kinetics and maximal aerobic power are unaffected by inspiratory muscle training in healthy subjects where time to exhaustion is extended

2004 ◽  
Vol 93 (1-2) ◽  
pp. 139-144 ◽  
Author(s):  
A. M. Edwards ◽  
C. B. Cooke
2009 ◽  
Vol 4 (1) ◽  
pp. 122-128 ◽  
Author(s):  
Andrew M. Edwards ◽  
Raewyn E. Walker

The efficacy of inspiratory muscle training (IMT) has been the subject of considerable controversy in terms of whether it is beneficial to endurance athletes and because a convincing physiological rationale has not been identified to explain its mechanism of action. Early studies suggested that IMT was an ineffectual intervention for gains in either maximal aerobic power or endurance-specific performance. More rigorous recent research supports the observation that maximal aerobic power is not receptive to IMT; however, closer evaluation of both early and contemporary research indicates that responses to endurance-specific performance tests are sensitive to IMT. As the aim of endurance training is to improve endurance performance rather than maximal aerobic power, it is plausible that IMT may be useful in specific performance-related circumstances. Performance adaptations following IMT appear to be connected with post training reports of attenuated effort sensations, but this common observation has tended to be overlooked by researchers in preference for a reductionist explanation. This commentary examines the pertinent research and practical performance implications of IMT from the holistic perspective of complex central metabolic control.


2018 ◽  
Vol 13 (2) ◽  
pp. 183-188 ◽  
Author(s):  
Bettina Karsten ◽  
Jonathan Baker ◽  
Fernando Naclerio ◽  
Andreas Klose ◽  
Antonino Bianco ◽  
...  

2018 ◽  
Vol 63 (1) ◽  
pp. 43-51 ◽  
Author(s):  
Charlini S. Hartz ◽  
Márcio A. G. Sindorf ◽  
Charles R. Lopes ◽  
José Batista ◽  
Marlene A. Moreno

Abstract Inspiratory muscle training (IMT) is a strategy that has been used to improve performance in different sports modalities. This study investigated the effects of an IMT program on respiratory muscle strength and resistance as well as aerobic physical performance (PP) of handball athletes. Nineteen 20 ± 3 year-old male athletes were allocated into an experimental (EG, n = 10) or a placebo group (PG, n = 9). Their respiratory muscle strength was evaluated by measuring the maximum inspiratory and expiratory pressures (MIP and MEP), muscular respiratory resistance by maximum voluntary ventilation (MVV) and aerobic PP by the cardiopulmonary exercise test. The study was designed to evaluate the effects of a 12-week IMT program with five sessions a week. A significant difference was observed in the pre and post IMT values of the MIP (170 ± 34 to 262 ± 33 cmH2O) and MEP (177 ± 36 to 218 ± 37 cmH2O) in the EG, and MIP (173 ± 45 to 213 ± 21 cmH2O) in the PG, with a large effect size for the MIP, when the groups were compared. MVV showed a significant increase (162 ± 24 to 173 ± 30 L) in the EG, with a small effect size. There was a significant difference in maximum oxygen uptake (54 ± 8 to 60 ± 7 ml/kg/min) in aerobic PP. Oxygen uptake at the respiratory compensation point (RCP) (46 ± 6 to 50 ± 5 ml/kg/min), with a moderate effect size for both variables, was observed in the EG after IMT. We concluded that IMT provided a significant increase in respiratory muscle strength and resistance, contributing to increased aerobic PP in the EG, which suggests that IMT could be incorporated in handball players’ training.


2014 ◽  
Vol 39 (2) ◽  
pp. 248-254 ◽  
Author(s):  
David W. Hill

The aim was to investigate the effect of time of day on 4 variables that are related to sport performance. Twenty healthy young men (mean ± SD: 22 ± 3 years, 1.78 ± 0.08 m, 72.0 ± 7.0 kg) performed exhaustive severe-intensity cycle ergometer tests at 278 ± 35 W (3.8 ± 0.4 W·kg–1) in the morning (between 0630 h and 0930 h) and in the evening (between 1700 h and 2000 h). Despite that gross efficiency was lower in the evening (estimated oxygen demand was 6% higher, P < 0.05), time to exhaustion was 20% greater (P < 0.01) in the evening (329 ± 35 s) than in the morning (275 ± 29 s). Performance in the evening was associated with a 4% higher (P < 0.01) maximal oxygen uptake (54 ± 7 mL·kg–1·min–1 vs. 52 ± 6 mL·kg–1·min–1, for the evening and the morning, respectively) and a 7% higher (P < 0.01) anaerobic capacity (as reflected by maximal accumulated oxygen deficit: 75 ± 9 mL·kg–1 vs. 70 ± 7 mL·kg–1, for the evening and the morning, respectively). In addition, oxygen uptake kinetics was faster in the evening, which resulted in slower utilization of the anaerobic reserves. It is concluded that modest morning–evening differences in maximal oxygen uptake, anaerobic capacity, and oxygen uptake kinetics conflate to produce a markedly longer performance in the evening than in the morning. Time of day must be considered for exercise testing and perhaps for exercise training.


2011 ◽  
Vol 57 (14) ◽  
pp. E515
Author(s):  
Pedro Dal Lago ◽  
Janaina B. Ferreira ◽  
Cinara Stein ◽  
Karina R. Casalli ◽  
Maria Cláudia Irigoyen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document