Structural changes in postural sway lend insight into effects of balance training, vision, and support surface on postural control in a healthy population

2010 ◽  
Vol 111 (7) ◽  
pp. 1485-1495 ◽  
Author(s):  
Adam J. Strang ◽  
Joshua Haworth ◽  
Mathias Hieronymus ◽  
Mark Walsh ◽  
L. James Smart
2018 ◽  
Vol 30 (1) ◽  
pp. 176-184 ◽  
Author(s):  
Michael Wälchli ◽  
Jan Ruffieux, ◽  
Audrey Mouthon ◽  
Martin Keller ◽  
Wolfgang Taube

Purpose: Balance training (BT) studies in children reported conflicting results without evidence for improvements in children under the age of 8. The aim of this study therefore was to compare BT adaptations in children of different age groups to clarify whether young age prevents positive training outcomes. Methods: The effects of 5 weeks of child-oriented BT were tested in 77 (38 girls and 39 boys) participants of different age groups (6–7 y, 11–12 y, and 14–15 y) and compared with age-matched controls. Static and dynamic postural control, explosive strength, and jump height were assessed. Results: Across age groups, dynamic postural sway decreased (−18.7%; P = .012; ) and explosive force increased (8.6%; P = .040; ) in the intervention groups. Age-specific improvements were observed in dynamic postural sway, with greatest effects in the youngest group (−28.8%; P = .026; r = .61). Conclusion: In contrast to previous research using adult-oriented balance exercises, this study demonstrated for the first time that postural control can be trained from as early as the age of 6 years in children when using child-oriented BT. Therefore, the conception of the training seems to be essential in improving balance skills in young children.


1991 ◽  
Vol 1 (2) ◽  
pp. 153-160
Author(s):  
Charles R. Fox ◽  
Gary D. Paige

Effective interpretation of vestibular inputs to postural control requires that orientation of head on body is known. Postural stability might deteriorate when vestibular information and neck information are not properly coupled, as might occur with vestibular pathology. Postural sway was assessed in unilateral vestibulopathic patients before and acutely, 1,4, and 18+ months after unilateral vestibular ablation (UVA) as well as in normal subjects. Postural equilibrium with eyes closed was quantified as scaled pk-pk sway during 20 s trials in which the support surface was modulated proportionally with sway. Subjects were tested with the head upright and facing forward, turned 45∘ right, and 45∘ left. Equilibrium was uninfluenced by head orientation in normal subjects. In contrast, patients after UV A showed both a general reduction in stability and a right/left head orientation-dependent asymmetry. These abnormalities adaptively recovered with time. It is concluded that vestibular inputs to postural control are interpreted within a sensory-motor context of head-on-body orientation.


2016 ◽  
Vol 53 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Çağlar Edis ◽  
Faik Vural ◽  
Hikmet Vurgun

AbstractMaking assessments regarding postural control and balance is very important for injury prevention in soccer. However, there has been no study that has associated postural control variables with branch-specific technical properties in a game. The aim of the present study was to determine the relationships between variables designating postural control levels and technical performance variables in different (1:1, 2:2 and 3:3) small-sided games (SSGs). Sixteen trained male amateur soccer players volunteered to take part in the study (age 17.2 ± 1.02 years, body height 176.25 ± 0.07 m, body mass 67.67 ± 13.27 kg). Following familiarization sessions, postural control was evaluated using one-leg and both-leg quiet-stance positions by measuring postural sway with a Tekscan HR Mat™ in anterior–posterior and medial–lateral directions. Later, 1:1, 2:2 and 3:3 SSGs were performed at two-day intervals and the technical variables specified for each game were analyzed. A Spearman’s rank-order correlation analysis demonstrated the relationship between postural control and soccer-specific technical variables in 1:1 (r-values ranging from 0.582 to 0.776), 2:2 (rvalues ranging from 0.511 to 0.740) and 3:3 (r-values ranging from 0.502 to 0.834) SSGs. In addition, a Wilcoxon signed rank test revealed differences between SSGs in terms of several variables. The results of the study showed that higher postural control levels are among the important variables that affect success in the performance of technical skills under rival pressure and suddenly changing conditions. Therefore, it is recommended that in addition to its use for injury prevention purposes, balance training should be conducted to improve branch-specific technical skills and to increase the levels of their successful performance in a game.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Massimiliano Pau ◽  
Giancarlo Coghe ◽  
Federica Corona ◽  
Bruno Leban ◽  
Maria Giovanna Marrosu ◽  
...  

Balance training represents a critical part of the rehabilitation process of individuals living with multiple sclerosis (MS) since impaired postural control is a distinctive symptom of the disease. In recent years, the use of the Nintendo Wii system has become widespread among rehabilitation specialists for this purpose, but few studies have verified the effectiveness of such an approach using quantitative measures of balance. In this study, we analyzed the postural sway features of a cohort of twenty-seven individuals with MS before and after 5 weeks of unsupervised home-based balance training with the Wii system. Center of pressure (COP) time-series were recorded using a pressure platform and processed to calculate sway area, COP path length, displacements, and velocities in mediolateral (ML) and anteroposterior (AP) directions. Although the results show a significant reduction in sway area, COP displacements, and velocity, such improvements are essentially restricted to the ML direction, as the Wii platform appears to properly stimulate the postural control system in the frontal plane but not in the sagittal one. Available Wii games, although somewhat beneficial, appear not fully suitable for rehabilitation in MS owing to scarce flexibility and adaptability to MS needs and thus specific software should be developed.


Author(s):  
Jennifer M. Schmit ◽  
Deanna I. Rejacques ◽  
Michael A. Riley

The present study is designed to address the relationship between postural sway and balance training. We compared postural sway in a group of trained dancers to a group of physically fit, untrained participants (control group) in order to assess enhanced postural control with balance training, particularly under challenging balance conditions. We varied the difficulty of postural control by using two surface conditions (rigid surface, foam surface) and two visual conditions (eyes open, eyes closed), factorially combined. The data were evaluated using 1-between (group) × 2-within (vision and surface) analyses of variance (ANOVA). The three dependent variables were the standard deviation of the COP time series in the anterior-posterior (AP) and medial-lateral (ML) axes, and the COP path length. Significant main effects were found for surface and vision and the surface*vision interaction in all conditions. Significant group differences were found in the AP and ML axes. The results of this study indicate that balance training enhances the control of posture. Thus, it may be useful to provide balance training to workers who must operate under conditions that threaten balance.


Author(s):  
Fariba Yadolahi ◽  
◽  
Mohsen Roostaei ◽  
Minoo Khalkhali Zavieh ◽  
Abas Rahimi ◽  
...  

Background: Stroke is one of the most debilitating diseases among the adults around the world which leads to persistent rehabilitation needs even at chronic stage. Achievement of good postural control is a critical requirement for daily activities which enhances quality of life in patients with stroke. There is increasing evidence that transcranial direct current stimulation (tDCS) may be considered as a promising adjunct technique to improve motor recovery after stroke. Evidence of augmented neuroplasticity after tDCS suggests that a paired rehabilitation followed by consecutive use of tDCS may optimize recovery outcomes. Although a few RCTs have been conducted on upper limbs rehabilitation in chronic stroke using tDCS, however no study focused on balance training in chronic stroke patients. This randomized, sham-controlled, double-blinded clinical study aims to address brain stimulation targeting postural control using tDCS in chronic stroke. Methods: The study participants will be chronic ischemic stroke individuals with postural control impairments who meet no exclusion criteria. Active or sham anodal tDCS will delivered to lesioned leg motor cortex combined with balance training. Experimental group receive active anodal tDCS stimulation (2mA) for 20 min, daily for 5 days paired with balance training. Linear and nonlinear approaches will be used to analyse postural sway changes pre and post-intervention. Postural sway fluctuation, Functional balance assessment using Berg balance scale, Timed Up-and-Go Test will be compared in active and sham groups. Conclusions: This trial could have significant implications for balance rehabilitation after stroke in the ambulatory setting. If found to be effective, this novel approach may improve rehabilitation protocol in this population.


Author(s):  
T. Santos ◽  
C.S.F. Gomes ◽  
L. Hennetier ◽  
V.A.F. Costa ◽  
L.C. Costa

1999 ◽  
Vol 9 (2) ◽  
pp. 103-109
Author(s):  
Reginald L. Reginella ◽  
Mark S. Redfern ◽  
Joseph M. Furman

Sensory information from lightly touching a reference with the hand is known to influence postural sway in young adults. The primary aim of this study was to compare the influence of finger contact (FC) with an earth-fixed reference to the influence of FC with a body-fixed reference. A second goal of this study was to determine if FC is used differently by older adults compared to younger adults. Using a force plate, center of pressure at the feet was recorded from blindfolded young and older subjects during several conditions. Subjects either did or did not lightly touch a force-sensitive plate that was either earth-fixed or moved forward and backward in synchrony with body sway (that is, sway-referenced). In addition, support surface conditions were also varied, including a fixed floor and a sway-referenced floor using an EquitestTM. Results showed that the type of FC, floor condition, and age each had an effect on postural sway. Touching an earth-fixed plate decreased postural sway as compared to no touching, while touching a sway-referenced plate incresased sway. This influence of FC was enhanced when the floor was sway-referenced. Although older subjects swayed more than young subjects overall, no age-FC interactions occurred, indicating that FC was not utilized differently between the age groups. This study suggests that FC cannot be disregarded as erroneous, especially when proprioceptive information from the legs is distorted. Further, FC is integrated with other sensory information by the postural control system similarly in young and older persons.


Sign in / Sign up

Export Citation Format

Share Document