scholarly journals Whole body cryotherapy, cold water immersion, or a placebo following resistance exercise: a case of mind over matter?

2018 ◽  
Vol 119 (1) ◽  
pp. 135-147 ◽  
Author(s):  
Laura J. Wilson ◽  
Lygeri Dimitriou ◽  
Frank A. Hills ◽  
Marcela B. Gondek ◽  
Emma Cockburn
2017 ◽  
Vol 12 (3) ◽  
pp. 402-409 ◽  
Author(s):  
Abd-Elbasset Abaïdia ◽  
Julien Lamblin ◽  
Barthélémy Delecroix ◽  
Cédric Leduc ◽  
Alan McCall ◽  
...  

Purpose:To compare the effects of cold-water immersion (CWI) and whole-body cryotherapy (WBC) on recovery kinetics after exercise-induced muscle damage.Methods:Ten physically active men performed single-leg hamstring eccentric exercise comprising 5 sets of 15 repetitions. Immediately postexercise, subjects were exposed in a randomized crossover design to CWI (10 min at 10°C) or WBC (3 min at –110°C) recovery. Creatine kinase concentrations, knee-flexor eccentric (60°/s) and posterior lower-limb isometric (60°) strength, single-leg and 2-leg countermovement jumps, muscle soreness, and perception of recovery were measured. The tests were performed before and immediately, 24, 48, and 72 h after exercise.Results:Results showed a very likely moderate effect in favor of CWI for single-leg (effect size [ES] = 0.63; 90% confidence interval [CI] = –0.13 to 1.38) and 2-leg countermovement jump (ES = 0.68; 90% CI = –0.08 to 1.43) 72 h after exercise. Soreness was moderately lower 48 h after exercise after CWI (ES = –0.68; 90% CI = –1.44 to 0.07). Perception of recovery was moderately enhanced 24 h after exercise for CWI (ES = –0.62; 90% CI = –1.38 to 0.13). Trivial and small effects of condition were found for the other outcomes.Conclusions:CWI was more effective than WBC in accelerating recovery kinetics for countermovement-jump performance at 72 h postexercise. CWI also demonstrated lower soreness and higher perceived recovery levels across 24–48 h postexercise.


2014 ◽  
Vol 4 (1) ◽  
pp. 243-250 ◽  
Author(s):  
J. T. Costello ◽  
P. M. McNamara ◽  
M. L. O’Connell ◽  
L. A. Algar ◽  
M. J. Leahy ◽  
...  

2013 ◽  
Vol 35 (01) ◽  
pp. 35-40 ◽  
Author(s):  
J. Costello ◽  
A. Donnelly ◽  
A. Karki ◽  
J. Selfe

2015 ◽  
Vol 47 ◽  
pp. 508
Author(s):  
Martim Bottaro ◽  
João Batista Ferreira-Junior ◽  
Amilton Vieira ◽  
Angelina F. Siqueira ◽  
João Durigan ◽  
...  

2017 ◽  
Vol 118 (1) ◽  
pp. 153-163 ◽  
Author(s):  
Laura J. Wilson ◽  
Emma Cockburn ◽  
Katherine Paice ◽  
Scott Sinclair ◽  
Tanwir Faki ◽  
...  

2015 ◽  
Vol 309 (4) ◽  
pp. R389-R398 ◽  
Author(s):  
Llion A. Roberts ◽  
Makii Muthalib ◽  
Jamie Stanley ◽  
Glen Lichtwark ◽  
Kazunori Nosaka ◽  
...  

Cold water immersion (CWI) and active recovery (ACT) are frequently used as postexercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q̇), muscle oxygenation (SmO2), blood volume (tHb), muscle temperature (Tmuscle), and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q̇ (7.9 ± 2.7 l) and Tmuscle (2.2 ± 0.8°C) increased, whereas SmO2 (−21.5 ± 8.8%) and tHb (−10.1 ± 7.7 μM) decreased after exercise ( P < 0.05). During CWI, Q̇ (−1.1 ± 0.7 l) and Tmuscle (−6.6 ± 5.3°C) decreased, while tHb (121 ± 77 μM) increased ( P < 0.05). In the hour after CWI, Q̇ and Tmuscle remained low, while tHb also decreased ( P < 0.05). By contrast, during ACT, Q̇ (3.9 ± 2.3 l), Tmuscle (2.2 ± 0.5°C), SmO2 (17.1 ± 5.7%), and tHb (91 ± 66 μM) all increased ( P < 0.05). In the hour after ACT, Tmuscle, and tHb remained high ( P < 0.05). Peak isometric strength during 10-s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (−30 to −45 Nm; P < 0.05). Muscle deoxygenation time during MVCs increased after ACT ( P < 0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI ( P = 0.052). These findings suggest first that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and second, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature.


2004 ◽  
Vol 92 (1-2) ◽  
pp. 56-61 ◽  
Author(s):  
J. M. Stocks ◽  
M. J. Patterson ◽  
D. E. Hyde ◽  
A. B. Jenkins ◽  
K. D. Mittleman ◽  
...  

2015 ◽  
Vol 24 (2) ◽  
pp. 99-108 ◽  
Author(s):  
Adam R. Jajtner ◽  
Jay R. Hoffman ◽  
Adam M. Gonzalez ◽  
Phillip R. Worts ◽  
Maren S. Fragala ◽  
...  

Context:Resistance training is a common form of exercise for competitive and recreational athletes. Enhancing recovery from resistance training may improve the muscle-remodeling processes, stimulating a faster return to peak performance.Objective:To examine the effects of 2 different recovery modalities, neuromuscular electrical stimulation (NMES) and cold-water immersion (CWI), on performance and biochemical and ultrasonographic measures.Participants:Thirty resistance-trained men (23.1 ± 2.9 y, 175.2 ± 7.1 cm, 82.1 ± 8.4 kg) were randomly assigned to NMES, CWI, or control (CON).Design and Setting:All participants completed a high-volume lower-body resistance-training workout on d 1 and returned to the human performance laboratory 24 (24H) and 48 h (48H) postexercise for follow-up testing.Measures:Blood samples were obtained preexercise (PRE) and immediately (IP), 30 min (30P), 24 h (24H), and 48 h (48H) post. Subjects were examined for performance changes in the squat exercise (total repetitions and average power per repetition), biomarkers of inflammation, and changes in cross-sectional area and echo intensity (EI) of the rectus femoris (RF) and vastus lateralis muscles.Results:No differences between groups were observed in the number of repetitions (P = .250; power: P = .663). Inferential-based analysis indicated that increases in C-reactive protein concentrations were likely increased by a greater magnitude after CWI compared with CON, while NMES possibly decreased more than CON from IP to 24H. Increases in interleukin-10 concentrations between IP and 30P were likely greater in CWI than NMES but not different from CON. Inferential-based analysis of RF EI indicated a likely decrease for CWI between IP and 48H. No other differences between groups were noted in any other muscle-architecture measures.Conclusions:Results indicated that CWI induced greater increases in pro- and anti-inflammatory markers, while decreasing RF EI, suggesting that CWI may be effective in enhancing short-term muscle recovery after high-volume bouts of resistance exercise.


Sign in / Sign up

Export Citation Format

Share Document