scholarly journals Acute mechanical, physiological and perceptual responses in older men to traditional-set or different cluster-set configuration resistance training protocols

2020 ◽  
Vol 120 (10) ◽  
pp. 2311-2323
Author(s):  
Antonio Dello Iacono ◽  
Domenico Martone ◽  
Lawrence Hayes

Abstract Purpose The aims of this study were to compare mechanical outputs (i.e. power and impulse), physiological (i.e. heart rate) and perceptual (i.e. effort and fatigue) responses in older men to traditional-set or different cluster-set configuration resistance training protocols. Methods In a randomized cross-over design, 20 healthy old men (aged 67.2 ± 2.1 years) completed four resistance training sessions using the back squat exercise loaded with optimal power loads. Training configurations were: traditional (TRA), three sets of six repetitions with 120-s rest between each set; Cluster-set 1 (CLU1), 24 single-repetition clusters with 10 s of rest after every cluster; Cluster-set 2 (CLU2), 12 double-repetition clusters with 20-s rest after every cluster; and Cluster-set 4 (CLU4), 6 quadruple-repetition clusters with 40-s rest after every cluster. Results Cluster-set configurations resulted in greater power outputs compared to traditional-set configuration (range 2.6–9.2%, all p$$\le$$ ≤ 0.07 for main effect and protocol $$\times$$ × set interactions). CLU1 and CLU2 induced higher heart rate (range 7.1–10.5%, all p < 0.001 for main effect and protocol $$\times$$ × set interactions), lower rating of perceived exertion (range − 1.3 to − 3.2 AU, all p$$\le$$ ≤ 0.006 for pairwise comparisons) and lower ratings of fatigue (range − 0.15 to − 4 AU, all p$$\le$$ ≤ 0.012 for pairwise comparisons) compared to TRA and CLU4. Finally, an absolute preference for CLU2 was reported. Conclusions Findings presented here support the prescription of CLU2 as an optimal resistance training configuration for trained older men using the back squat.

Author(s):  
Jose A. Rodríguez-Marroyo ◽  
Beltrán González ◽  
Carl Foster ◽  
Ana Belén Carballo-Leyenda ◽  
José G. Villa

Purpose: This study investigated the effect of cooldown modality (active vs passive) and duration (5, 10, and 15 min) on session rating of perceived exertion (sRPE). Secondarily, the possible influence of training sessions’ demand on this effect was studied. Methods: A total of 16 youth male soccer players (15.7 [0.4] y) completed 2 standardized training sessions per week across 6 weeks. During weeks 1 to 2, 3 to 4, and 5 to 6, cooldown lengths of 15, 10, and 5 minutes were studied, respectively. Using a crossover design, players were randomly assigned to 2 groups and each group performed 1 of 2 different cooldown interventions. Passive and active cooldown interventions based on static stretching and running exercises were studied. Heart rate and sRPE were recorded during all training sessions. Results: The lowest sRPE was observed when passive cooldown was performed. When the hardest training sessions were considered, a significant main effect of cooldown modality (P < .01) and duration (P < .05) and an interaction effect between these variables (P < .05) on sRPE were obtained. The lowest (P < .01) sRPE was observed during the longest cooldown (15 min). Conclusion: The findings suggest that sRPE may be sensitive to the selected cooldown modality and duration, especially following the most demanding training sessions.


Author(s):  
Josinaldo Jarbas da Silva ◽  
Willy Andrade Gomes ◽  
Silvio Luiz Pecoraro ◽  
Enrico Gori Soares ◽  
Roberto Aparecido Magalhães ◽  
...  

Abstract The range of motion (ROM) may affect the external maximal load during back squat (BS) exercise. The correct ROM manipulation can be useful as an exercise load manipulation strategy, changing the volume load during a resistance training session. The aim of this study was to evaluate the acute effects of ROM on relative load, absolute load and the rating of perceived exertion (RPE) during partial and full BS exercise with adjusted loads. Fifteen male individuals (age: 26.5±4.5 years; height: 173±6 cm; body mass: 80.6 ± 8.8 kg; resistance training experience 5±3 years) participated in this study. The experimental procedure was conducted in two sessions. In the first session, brief familiarization and a 10-repetition maximal test (10-RM) was performed for partial (PBS) and full BS exercise (FBS) with 30-min of rest interval. During the second session, all subjects performed 1 set of 10-RM in both conditions (partial and full ROM), and relative load, absolute load, and RPE were evaluated. A paired t-test was used to compare means. The results showed higher values for PBS when compared to FE exercise: relative load (PBS: 1.14±0.24xBW vs. FBS: 0.87±0.24xBW; P<0.001), and absolute load (PBS: 925±249 kg x FBS: 708±232 kg, P<0.001). Similar RPE was observed between conditions (PBS: 8.6±1.3 IEP x FBS: 8.5±1.0 IEP, P=0.855). It was concluded that PBS allowed higher relative load and absolute load during 10RM, without effects on RPE.


2020 ◽  
Vol 42 (01) ◽  
pp. 82-89
Author(s):  
Witalo Kassiano ◽  
Bruna Daniella de Vasconcelos Costa ◽  
Daltonde Lima-Júnior ◽  
Petrus Gantois ◽  
Fabiano de Souza Fonseca ◽  
...  

AbstractThe assessment of parasympathetic nervous activity and psychophysiological responses infers the stress imposed by different resistance training systems. Therefore, we compare the effects of different sets configurations, with similar volume (~60 repetitions), on heart rate variability indices and internal training load. Twenty-nine resistance-trained adults completed the following conditions: traditional without and with muscle failure, inter-repetition rest, and rest-pause in the parallel squat. The heart rate variability indices (time-domain) were measured before and 30 min after each condition. The internal training load was obtained through the session-rating of perceived exertion method. Except for inter-repetition rest, all conditions reduced the heart rate variability indices after the session (P<0.05), and the rest-pause triggered the higher reductions (≤−46.7%). The internal training load was higher in the rest-pause (≤68.9%). Our results suggest that rest-pause configuration leads to more considerable disruption of the parasympathetic nervous activity and higher internal training load in trained adults. In contrast, inter-repetition rest allows lower autonomic and psychophysiological stress.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 213
Author(s):  
Domingo Jesús Ramos-Campo ◽  
Silvia Pérez-Piñero ◽  
Juan Carlos Muñoz-Carrillo ◽  
Francisco Javier López-Román ◽  
Esther García-Sánchez ◽  
...  

Due to COVID-19, wearing a face mask to reduce virus transmission is currently mandatory in some countries when participants practice exercise in sports centers. Therefore, the aim of the present study was to analyze the effect of wearing a surgical or FFP2 mask during a resistance training session. Fourteen people with sarcopenia (age: 59.40 ± 5.46 years; weight: 68.78 ± 8.31 kg; height: 163.84 ± 9.08 cm) that participated in the study performed three training sessions in a randomized order: 4 sets of 10 repetitions of a half-squat at 60% of the one-repetition maximum and 90 s of rest between set and were either (a) without a mask (NM), (b) wearing a surgical face mask (SM), and (c) wearing a FFP2 face mask (FFP2). We found that wearing face masks had no effect on strength performance (session mean propulsive velocity (m/s): WM: 0.396 ± 0.042; SM: 0.387 ± 0.037; and FFP2: 0.391 ± 0.042 (p = 0.918)). Additionally, no impact of wearing a mask was found on heart rate, heart rate variability, blood lactate concentration (WM: 4.17 ± 1.89; SM: 4.49 ± 2.07; and FFP2: 5.28 ± 2.45 mmol/L (p = 0.447)), or rating of perceived exertion. Wearing a surgical or FFP2 face mask during a resistance training session resulted in similar strength performance and physiological responses than the same exercise without a mask in persons with sarcopenia.


Author(s):  
Alice Iannaccone ◽  
Daniele Conte ◽  
Cristina Cortis ◽  
Andrea Fusco

Internal load can be objectively measured by heart rate-based models, such as Edwards’ summated heart rate zones, or subjectively by session rating of perceived exertion. The relationship between internal loads assessed via heart rate-based models and session rating of perceived exertion is usually studied through simple correlations, although the Linear Mixed Model could represent a more appropriate statistical procedure to deal with intrasubject variability. This study aimed to compare conventional correlations and the Linear Mixed Model to assess the relationships between objective and subjective measures of internal load in team sports. Thirteen male youth beach handball players (15.9 ± 0.3 years) were monitored (14 training sessions; 7 official matches). Correlation coefficients were used to correlate the objective and subjective internal load. The Linear Mixed Model was used to model the relationship between objective and subjective measures of internal load data by considering each player individual response as random effect. Random intercepts were used and then random slopes were added. The likelihood-ratio test was used to compare statistical models. The correlation coefficient for the overall relationship between the objective and subjective internal data was very large (r = 0.74; ρ = 0.78). The Linear Mixed Model using both random slopes and random intercepts better explained (p < 0.001) the relationship between internal load measures. Researchers are encouraged to apply the Linear Mixed Models rather than correlation to analyze internal load relationships in team sports since it allows for the consideration of the individuality of players.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Kelvin Euton Oliveira Carmo ◽  
Diego Ignácio Valenzuela Pérez ◽  
Charles Nardelli Valido ◽  
Jymmys Lopes dos Santos ◽  
Bianca Miarka ◽  
...  

Abstract Background Nutritional ergogenic aids are foods or nutrients that can improve physical performance. Among these foods with ergogenic properties, caffeine has shown that it can increase the fat catabolism, strength, and improve the cognition and time reaction of an athlete, therefore, it is hoped that it can improve the performance of judokas. This study through a double-blind crossover (supplement X placebo) protocol, investigated the effects caffeine supplementation (single capsule containing 5 mg/kg body mass intake 60 min before the session) on biochemical, anthropometrical, physical, subjective and hemodynamic variables measured before, during and after two typical judo trainingcxs sessions (120-min: 40-min of gymnastics; 40-min of specific technics and; 40-min of judo combat). Methods 8 high-level athletes (21.4 ± 2.0 years; 83.6 ± 15.2 kg; 1.8 ± 0.1 m; 17.9 ± 7.0 Fat%) were evaluated before and after each training for body mass, hydration, upper and lower limb power, performance in the special judo fitness test (SJFT), free fatty acids (FFA) in plasma, uric acid, glucose, lactate, heart rate, and pain. In addition, heart rate, FFA in plasma, uric acid, glucose, lactate, rating of perceived exertion and pain were assessed during the training. Results At 120 min, supplementation resulted in a higher concentration of plasma FFA (1.5 ± 0.5 vs. 1.0 ± 0.3 mmol/L; p = 0.047) and lactate (4.9 ± 1.8 vs. 3.0 ± 1.2 mmol/L; p = 0.047), and a lower concentration of uric acid (5.4 ± 0.9 vs. 7.0 ± 1.5 mg/dL; p = 0.04). Supplementation also resulted in performance maintenance (fatigue index) in the SJFT (Δ0.3 ± 2.0 vs Δ1.7 ± 2.5, for caffeine and placebo respectively, p = 0.046). No adverse effects were observed. Conclusion Based on the applied dose, intake time, and sample of this study, we can conclude that caffeine produces an ergogenic biochemical effect, and improves performance in judo athletes.


2016 ◽  
Vol 11 (6) ◽  
pp. 707-714 ◽  
Author(s):  
Benoit Capostagno ◽  
Michael I. Lambert ◽  
Robert P. Lamberts

Finding the optimal balance between high training loads and recovery is a constant challenge for cyclists and their coaches. Monitoring improvements in performance and levels of fatigue is recommended to correctly adjust training to ensure optimal adaptation. However, many performance tests require a maximal or exhaustive effort, which reduces their real-world application. The purpose of this review was to investigate the development and use of submaximal cycling tests that can be used to predict and monitor cycling performance and training status. Twelve studies met the inclusion criteria, and 3 separate submaximal cycling tests were identified from within those 12. Submaximal variables including gross mechanical efficiency, oxygen uptake (VO2), heart rate, lactate, predicted time to exhaustion (pTE), rating of perceived exertion (RPE), power output, and heart-rate recovery (HRR) were the components of the 3 tests. pTE, submaximal power output, RPE, and HRR appear to have the most value for monitoring improvements in performance and indicate a state of fatigue. This literature review shows that several submaximal cycle tests have been developed over the last decade with the aim to predict, monitor, and optimize cycling performance. To be able to conduct a submaximal test on a regular basis, the test needs to be short in duration and as noninvasive as possible. In addition, a test should capture multiple variables and use multivariate analyses to interpret the submaximal outcomes correctly and alter training prescription if needed.


2017 ◽  
Vol 39 (02) ◽  
pp. 115-123 ◽  
Author(s):  
Manuel Garnacho-Castaño ◽  
Raúl Domínguez ◽  
Arturo Muñoz González ◽  
Raquel Feliu-Ruano ◽  
Noemí Serra-Payá ◽  
...  

AbstractThe present study aimed to compare two fitness-training methodologies, instability circuit resistance training (ICRT) versus traditional circuit resistance training (TCRT), applying an experimental model of exercise prescription controlling and modulating exercise load using the Borg rating of perceived exertion. Forty-four healthy young adults age (21.6±2.3 years) were randomly assigned to three groups: TCRT (n=14), ICRT (n=14) and a control group (n=16). Strength and cardiorespiratory tests were chosen to evaluate cardiorespiratory and muscular fitness before and after the training program. In cardiorespiratory data, a significant difference was observed for the time effect in VO2max, peak heart rate, peak velocity, and heart rate at anaerobic threshold intensity (p<0.05) in the experimental groups. In strength variables, a significant Group x Time interaction effect was detected in 1RM, in mean propulsive power, and in peak power (p≤0.01) in the back squat exercise. In the bench press exercise, a significant time effect was detected in 1RM, in mean propulsive power, and in peak power, and a Group x Time interaction in peak power (all p<0.05). We can conclude that applying an experimental model of exercise prescription using RPE improved cardiorespiratory and muscular fitness in healthy young adults in both experimental groups.


Sign in / Sign up

Export Citation Format

Share Document