Rapid identification of Giardia duodenalis by loop-mediated isothermal amplification (LAMP) from faecal and environmental samples and comparative findings by PCR and real-time PCR methods

2009 ◽  
Vol 104 (6) ◽  
pp. 1527-1533 ◽  
Author(s):  
J. Plutzer ◽  
P. Karanis
2011 ◽  
Vol 47 (No. 4) ◽  
pp. 140-148 ◽  
Author(s):  
N. Rostamkhani ◽  
A. Haghnazari ◽  
M. Tohidfar ◽  
A. Moradi

In an attempt to speed up the process of screening of transgenic cotton (G. hirsutum L.) plants, a visual and rapid loop-mediated isothermal amplification (LAMP) assay was adopted. Genomic DNA was extracted from fresh leaf tissues of T<sub>2</sub> transgenic cotton containing chitinase (chi) and cry1A(b) genes. Detection of genes of interest was performed by polymerase chain reaction (PCR), LAMP and real-time PCR methods. In LAMP assay the amplification was performed after 30 min at 65&deg;C when loop primers were involved in the reaction. The involvement of loop primers decreased the time needed for amplification. By testing serial tenfold dilutions (10<sup>&ndash;1</sup> to 10<sup>&ndash;8</sup>) of the genes of interest, the detection sensitivity of LAMP was found to be 100-fold higher than that of PCR. The rapid DNA extraction method and LAMP assay can be performed within 30 min and the derived LAMP products can be directly observed as visually detectable based on turbidity in the reaction tube. The accuracy of LAMP method in the screening of transgenes was confirmed by PCR and real-time PCR. The developed method was efficient, rapid and sensitive in the screening of cotton transgenic plants. This method can be applied to any other crops.


2019 ◽  
Vol 57 (4) ◽  
Author(s):  
Matthew R. Watts ◽  
Rady Kim ◽  
Vishal Ahuja ◽  
Gemma J. Robertson ◽  
Yasmin Sultana ◽  
...  

ABSTRACTStrongyloides stercoraliscan cause disease that ranges from asymptomatic chronic infection to fatal hyperinfection. Diagnosis from stool can be challenging because the most sensitive conventional tests require live larvae to be effective and there can be low larval output in chronic infection. Nucleic acid amplification tests (NAAT) have been developed to complement existing diagnostic methods. We compared a recently developed loop-mediated isothermal amplification (LAMP) assay with a real-time PCR that has previously been validated with larval microscopy. The limits of detection—quantified using serial dilutions of DNA extracts from singleStrongyloides rattithird-stage (L3) larvae spiked into approximately 250 µl of 5 differentS. stercoralis-negative stool specimens—were 10−3(1/5 replicates) and 10−2(1/5 replicates) dilutions for PCR and LAMP, respectively. PCR was positive for 4/5 replicates at 10−2. LAMP was compared to PCR using extracts from 396 stool specimens collected in Bangladesh and Australia, of which 53 were positive and 343 were negative by PCR. The positive percentage agreement of LAMP was 77.3% (95% score confidence interval [CI], 64.5 to 86.6). The negative percentage agreement was 100% (95% CI, 98.9 to 100). In a preliminary investigation, PCR and LAMP assays were positive using DNA extracted from serum (PCR, 3/16 extracts; LAMP, 2/16 extracts) and bronchoalveolar lavage fluid (PCR and LAMP, 2/2 extracts), demonstrating proof of concept. Compared to PCR, the lower number of positive results using the LAMP assay may have been due to reaction inhibitors and DNA degradation, and strategies to improve the LAMP assay are discussed.


2017 ◽  
Vol 100 (1) ◽  
pp. 99-103 ◽  
Author(s):  
Xinyue Zhang ◽  
Guojie Xu ◽  
Huaqi Tang ◽  
Yanpeng Li ◽  
Chunsheng Liu

Abstract Fungi of the Alternaria genus are associated with allergic diseases, with Alternaria alternata being one of the most prevalent species. A. alternata has been frequently reported as the etiologic agent of hypersensitivity pneumonitis, allergic rhinosinusitis, bronchial asthma,and other diseases. In this study, we developed a loop-mediated isothermal amplification (LAMP) assay and a real-time PCR assay to detect low levels of A. alternata in herbal tea samples. The LAMP assay can detect as little as 3 pg/μL of A. alternata genomic DNA with high specificity. In addition, both the LAMP assay and the real-time PCR assay can be used for quantification of A. alternata. Although the newly developed LAMP assay is more rapid and specific in A. alternata identification, the real-time PCR assay is more precise in quantitation analysis.


2011 ◽  
Vol 24 (1) ◽  
pp. 138-141 ◽  
Author(s):  
Shan-Chia Ou ◽  
Joseph J. Giambrone ◽  
Kenneth S. Macklin

A TaqMan real-time polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) assay were developed to detect Gallid herpesvirus 1 (GaHV-1, formerly Infectious laryngotracheitis virus). The standard curve of real-time PCR was established, and the sensitivity reached 10 copies/μl. In the current study, the conversion between viral titer and GaHV-1 genomic copy number was constructed. Six primers for LAMP assay amplified target gene at 65°C within 45 min, and the detection limit was 60 copies/μl. The 6 primers were highly specific, sensitive, and reproducible for detection of GaHV-1. Although the sensitivity of LAMP was lower than that of real-time PCR, LAMP was faster, less expensive, and did not require a thermocycler. The LAMP assay would be a viable alternative assay in diagnostic laboratories that do not employ real-time PCR technology.


2015 ◽  
Vol 64 (4) ◽  
pp. 463-465 ◽  
Author(s):  
Mohammad Reza Allahyar Torkaman ◽  
Kazunari Kamachi ◽  
Vajihe Sadat Nikbin ◽  
Masoumeh Nakhost Lotfi ◽  
Fereshteh Shahcheraghi

Sign in / Sign up

Export Citation Format

Share Document