scholarly journals Temporal and spatial variation in sex-specific abundance of the avian vampire fly (Philornis downsi)

Author(s):  
Lauren K. Common ◽  
Petra Sumasgutner ◽  
Shane C. Sumasgutner ◽  
Diane Colombelli-Négrel ◽  
Rachael Y. Dudaniec ◽  
...  

Abstract Understanding the range and behaviour of an invasive species is critical to identify key habitat areas to focus control efforts. Patterns of range use in parasites can differ temporally, across life stages and between sexes. The invasive avian vampire fly, Philornis downsi, spends the larval stage of its life within bird nests, feeding on developing nestlings and causing high levels of mortality and deformation. However, little is known of the ecology and behaviour of the non-parasitic adult fly life stage. Here, we document sex-specific temporal and spatial patterns of abundance of adult avian vampire flies during a single Darwin’s finch breeding season. We analyse fly trapping data collected across 7 weeks in the highlands (N = 405 flies) and lowlands (N = 12 flies) of Floreana Island (Galápagos). Lowland catches occurred later in the season, which supports the hypothesis that flies may migrate from the food-rich highlands to the food-poor lowlands once host breeding has commenced. Fly abundance was not correlated with host nesting density (oviposition site) but was correlated with distance to the agricultural zone (feeding site). We consistently caught more males closer to the agricultural zone and more females further away from the agricultural zone. These sex differences suggest that males may be defending or lekking at feeding sites in the agricultural zone for mating. This temporal and sex-specific habitat use of the avian vampire fly is relevant for developing targeted control methods and provides insight into the behavioural ecology of this introduced parasite on the Galápagos Archipelago.

2006 ◽  
Vol 33 (2) ◽  
pp. 103 ◽  
Author(s):  
R. Shine ◽  
T. Langkilde ◽  
M. Wall ◽  
R. T. Mason

Although garter snakes at communal overwintering dens on the Canadian prairies have attracted considerable behavioural ecology research, previous studies have relied upon sampling of active animals to describe broad patterns of distribution and abundance of snakes within the den population. We conducted a mark–recapture study to directly quantify temporal and spatial variation in the phenotypic traits (sex, size, body condition) of snakes at the den itself, and those dispersing through woodland 50 m away. Captures of 909 snakes on the days they emerged, and 6653 snakes as they dispersed, revealed massive spatiotemporal heterogeneity in phenotypic traits among samples. Day-to-day variation in weather conditions affected numbers and sex ratios of emerging and dispersing snakes; for example, small females dispersed in greater numbers after unusually cold nights, when harassment by courting males was reduced. Most snakes stayed at the den only briefly (<5 days) prior to dispersal, so that sampling at the den itself (the only evidence available from most previous studies) underestimates the number of animals in the population, as well as the proportions of females, of small adult males and of juvenile animals. Overall, the heterogeneous and temporally dynamic distributions of phenotypic traits (such as sex and size) among our samples are predictable on the basis of the central roles of male–male competition and sexual conflict in the mating system of these snakes. Surprisingly, however, many of the snakes that overwinter at this den play no part in den-based breeding aggregations


Oryx ◽  
2021 ◽  
pp. 1-4
Author(s):  
Isabella Mandl ◽  
Amelaid Houmadi ◽  
Ishaka Said ◽  
Badrane Ben Ali Abdou ◽  
Abdoul-Kader Fardane ◽  
...  

Abstract Understanding the ecology of species is key to the development of effective conservation measures. For many fruit bat species, however, even baseline knowledge of ecology and behaviour is lacking. To identify feeding sites of the Critically Endangered Livingstone's flying fox Pteropus livingstonii on the island of Anjouan, Comoros, we piloted the use of GPS loggers. Two bats (one female, one male) were tagged in early 2019, and data collected for 217 and 35 days, respectively. Acceleration data facilitated the classification of location points into behavioural categories. Potential feeding sites were located by cluster analysis of all location points that were attributed to a behavioural category in which feeding could occur. One important feeding site was located in an agricultural area. This is the first time quantitative behavioural data have been collected for Livingstone's flying foxes, providing insight into the ecological needs of this threatened species. These findings have the potential to inform applied conservation management decisions for protecting the resources required for the survival of this species.


Author(s):  
Sebastian L Torres ◽  
Abraham Landeros ◽  
Eleanor J Penhallegon ◽  
Kaleth Salazar ◽  
Lindsay M Porter

Abstract Widow spiders are widely known for their potent venom toxins that make them among the few spiders of medical concern. The latrotoxins are the most well-studied widow toxins and include both the vertebrate-specific latrotoxins and the insect-specific latroinsectotoxins (LITs). Previous studies have shown that toxins are not limited to expression in the venom glands of adult spiders; however, gaps exist in latrotoxin screening across all life stages for brown widows, Latrodectus geometricus and southern black widows, Latrodectus mactans. In this study, we screened male and female venom gland, cephalothorax, and abdomen tissues, spiderling cephalothorax and abdomen tissues, and eggs of both L. geometricus and L. mactans, for the presence of three latrotoxins: α-latrotoxin (α-LTX), and α- and δ-latroinsectotoxins (α/δ-LITs). Widows were locally collected. Extracted RNA was used to prepare cDNA that was analyzed by PCR for the presence or absence of latrotoxin expression. Results show that expression profiles between the two species are very similar but not identical. Expression of α-LTX was found in all life stages in all tissues examined for both species. For both species, no LIT expression was detected in eggs and variable patterns of α-LIT expression were detected in spiderlings and adults. Notably, δ-LIT could only be detected in females for both species. Our results show that latrotoxin expression profiles differ within and between widow species. Data on their expression distribution provide further insight into the specific latrotoxins that contribute to toxicity profiles for each life stage in each species and their specific role in widow biology.


Author(s):  
Charlotte Scott

Beginning with an exploration of the role of the child in the cultural imagination, Chapter 1 establishes the formative and revealing ways in which societies identify themselves in relation to how they treat their children. Focusing on Shakespeare and the early modern period, Chapter 1 sets out to determine the emotional, symbolic, and political registers through which children are depicted and discussed. Attending to the different life stages and representations of the child on stage, this chapter sets out the terms of the book’s enquiry: what role do children play in Shakespeare’s plays; how do we recognize them as such—age, status, parental dynamic—and what are the effects of their presence? This chapter focuses on how the early moderns understood the child, as a symbolic figure, a life stage, a form of obligation, a profound bond, and an image of servitude.


Paleobiology ◽  
2021 ◽  
Vol 47 (2) ◽  
pp. 171-177
Author(s):  
James C. Lamsdell ◽  
Curtis R. Congreve

The burgeoning field of phylogenetic paleoecology (Lamsdell et al. 2017) represents a synthesis of the related but differently focused fields of macroecology (Brown 1995) and macroevolution (Stanley 1975). Through a combination of the data and methods of both disciplines, phylogenetic paleoecology leverages phylogenetic theory and quantitative paleoecology to explain the temporal and spatial variation in species diversity, distribution, and disparity. Phylogenetic paleoecology is ideally situated to elucidate many fundamental issues in evolutionary biology, including the generation of new phenotypes and occupation of previously unexploited environments; the nature of relationships among character change, ecology, and evolutionary rates; determinants of the geographic distribution of species and clades; and the underlying phylogenetic signal of ecological selectivity in extinctions and radiations. This is because phylogenetic paleoecology explicitly recognizes and incorporates the quasi-independent nature of evolutionary and ecological data as expressed in the dual biological hierarchies (Eldredge and Salthe 1984; Congreve et al. 2018; Fig. 1), incorporating both as covarying factors rather than focusing on one and treating the other as error within the dataset.


Author(s):  
Polpass Arul Jose ◽  
Michael Ben‐Yosef ◽  
Paola Lahuatte ◽  
Charlotte E. Causton ◽  
George E. Heimpel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document