scholarly journals The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes

2007 ◽  
Vol 278 (6) ◽  
pp. 633-638 ◽  
Author(s):  
Roman Hobza ◽  
Eduard Kejnovsky ◽  
Boris Vyskot ◽  
Alex Widmer
2021 ◽  
pp. 1-8
Author(s):  
Naiara P. Araújo ◽  
Radarane S. Sena ◽  
Cibele R. Bonvicino ◽  
Gustavo C.S. Kuhn ◽  
Marta Svartman

<i>Proechimys</i> species are remarkable for their extensive chromosome rearrangements, representing a good model to understand genome evolution. Herein, we cytogenetically analyzed 3 different cytotypes of <i>Proechimys</i> gr. <i>goeldii</i> to assess their evolutionary relationship. We also mapped the transposable element SINE-B1 on the chromosomes of <i>P.</i> gr. <i>goeldii</i> in order to investigate its distribution among individuals and evaluate its possible contribution to karyotype remodeling in this species. SINE-B1 showed a dispersed distribution along chromosome arms and was also detected at the pericentromeric regions of some chromosomes, including pair 1 and the sex chromosomes, which are involved in chromosome rearrangements. In addition, we describe a new cytotype for <i>P.</i> gr. <i>goeldii</i>, reinforcing the significant role of gross chromosomal rearrangements during the evolution of the genus. The results of FISH with SINE-B1 suggest that this issue should be more deeply investigated for a better understanding of its role in the mechanisms involved in the wide variety of <i>Proechimys</i> karyotypes.


2020 ◽  
Vol 11 ◽  
Author(s):  
Václav Bačovský ◽  
Radim Čegan ◽  
Denisa Šimoníková ◽  
Eva Hřibová ◽  
Roman Hobza

2018 ◽  
Vol 156 (4) ◽  
pp. 215-222 ◽  
Author(s):  
Lucas A.M. Rosolen ◽  
Marcelo R. Vicari ◽  
Mara C. Almeida

Coleoptera is the most diverse order among insects, and comparative molecular cytogenetic studies in this group are lacking. The species of Omophoita (Oedionychina) possess a karyotype of 2n = 22 = 10II+X+Y. They are interesting models for evolutionary cytogenetic studies due to giant sex chromosomes which are asynaptic during meiosis. Transposable elements (TEs) confer plasticity and mobility to genomes and are considered hotspots for DNA double-strand breaks and chromosomal rearrangements. The objective of the present study was to verify the role of TEs in the karyotype and in the size expansion of the giant sex chromosomes in Omophoita. Thus, different TEs were characterized in the Omophoita genome and localized in the chromosomes by fluorescence in situ hybridization (FISH). The DNA sequencing data revealed identity with TE families Tc1/Mariner and RTE/L1-56_XT. FISH showed signals of all TEs in the karyotypes and a high accumulation in the sex chromosomes of the 3 Omophoita species analyzed. These data suggest that the genome size expansion and the origin of the giant sex chromosomes of Omophoita are due to an intensive genomic invasion of TEs, as those characterized here as Tc1/Mariner-Ooc and RTE-Ooc. Differences in the chromosomal location of the TEs among the 3 species indicate that they have participated in the karyotype differentiation in Omophoita.


Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 549-557 ◽  
Author(s):  
Anne J Welcker ◽  
Jacky de Montigny ◽  
Serge Potier ◽  
Jean-Luc Souciet

Abstract Chromosomal rearrangements, such as deletions, duplications, or Ty transposition, are rare events. We devised a method to select for such events as Ura+ revertants of a particular ura2 mutant. Among 133 Ura+ revertants, 14 were identified as the result of a deletion in URA2. Of seven classes of deletions, six had very short regions of identity at their junctions (from 7 to 13 bp long). This strongly suggests a nonhomologous recombination mechanism for the formation of these deletions. The total Ura+ reversion rate was increased 4.2-fold in a rad52Δ strain compared to the wild type, and the deletion rate was significantly increased. All the deletions selected in the rad52Δ context had microhomologies at their junctions. We propose two mechanisms to explain the occurrence of these deletions and discuss the role of microhomology stretches in the formation of fusion proteins.


Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1269-1277
Author(s):  
Eduard Kejnovský ◽  
Jan Vrána ◽  
Sachihiro Matsunaga ◽  
Přemysl Souček ◽  
Jiří Široký ◽  
...  

Abstract The dioecious white campion Silene latifolia (syn. Melandrium album) has heteromorphic sex chromosomes, XX in females and XY in males, that are larger than the autosomes and enable their separation by flow sorting. The group of MROS genes, the first male-specifically expressed genes in dioecious plants, was recently identified in S. latifolia. To localize the MROS genes, we used the flow-sorted X chromosomes and autosomes as a template for PCR with internal primers. Our results indicate that the MROS3 gene is located in at least two copies tandemly arranged on the X chromosome with additional copy(ies) on the autosome(s), while MROS1, MROS2, and MROS4 are exclusively autosomal. The specificity of PCR products was checked by digestion with a restriction enzyme or reamplification using nested primers. Homology search of databases has shown the presence of five MROS3 homologues in A. thaliana, four of them arranged in two tandems, each consisting of two copies. We conclude that MROS3 is a low-copy gene family, connected with the proper pollen development, which is present not only in dioecious but also in other dicot plant species.


2019 ◽  
Vol 128 (3) ◽  
pp. 583-591
Author(s):  
Leo Joseph ◽  
Alex Drew ◽  
Ian J Mason ◽  
Jeffrey L Peters

Abstract We reassessed whether two parapatric non-sister Australian honeyeater species (Aves: Meliphagidae), varied and mangrove honeyeaters (Gavicalis versicolor and G. fasciogularis, respectively), that diverged from a common ancestor c. 2.5 Mya intergrade in the Townsville area of north-eastern Queensland. Consistent with a previous specimen-based study, by using genomics methods we show one-way gene flow for autosomal but not Z-linked markers from varied into mangrove honeyeaters. Introgression barely extends south of the area of parapatry in and around the city of Townsville. While demonstrating the long-term porosity of species boundaries over several million years, our data also suggest a clear role of sex chromosomes in maintaining reproductive isolation.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 550
Author(s):  
Matvey Mikhailovich Murashko ◽  
Ekaterina Mikhailovna Stasevich ◽  
Anton Markovich Schwartz ◽  
Dmitriy Vladimirovich Kuprash ◽  
Aksinya Nicolaevna Uvarova ◽  
...  

Incorrect reparation of DNA double-strand breaks (DSB) leading to chromosomal rearrangements is one of oncogenesis’s primary causes. Recently published data elucidate the key role of various types of RNA in DSB formation, recognition and repair. With growing interest in RNA biology, increasing RNAs are classified as crucial at the different stages of the main pathways of DSB repair in eukaryotic cells: nonhomologous end joining (NHEJ) and homology-directed repair (HDR). Gene mutations or variation in expression levels of such RNAs can lead to local DNA repair defects, increasing the chromosome aberration frequency. Moreover, it was demonstrated that some RNAs could stimulate long-range chromosomal rearrangements. In this review, we discuss recent evidence demonstrating the role of various RNAs in DSB formation and repair. We also consider how RNA may mediate certain chromosomal rearrangements in a sequence-specific manner.


2020 ◽  
Author(s):  
Zahida Sultanova ◽  
Philip A. Downing ◽  
Pau Carazo

ABSTRACTSex-specific lifespans are ubiquitous across the tree of life and exhibit broad taxonomic patterns that remain a puzzle, such as males living longer than females in birds and vice versa in mammals. The prevailing “unguarded-X” hypothesis (UXh) explains this by differential expression of recessive mutations in the X/Z chromosome of the heterogametic sex (e.g., females in birds and males in mammals), but has only received indirect support to date. An alternative hypothesis is that the accumulation of deleterious mutations and repetitive elements on the Y/W chromosome might lower the survival of the heterogametic sex (“toxic Y” hypothesis). Here, we report lower survival of the heterogametic relative to the homogametic sex across 138 species of birds, mammals, reptiles and amphibians, as expected if sex chromosomes shape sex-specific lifespans. We then analysed bird and mammal karyotypes and found that the relative sizes of the X and Z chromosomes are not associated with sex-specific lifespans, contrary to UXh predictions. In contrast, we found that Y size correlates negatively with male survival in mammals, where toxic Y effects are expected to be particularly strong. This suggests that small Y chromosomes benefit male lifespans. Our results confirm the role of sex chromosomes in explaining sex differences in lifespan, but indicate that, at least in mammals, this is better explained by “toxic Y” rather than UXh effects.


PLoS Genetics ◽  
2007 ◽  
Vol 3 (11) ◽  
pp. e198 ◽  
Author(s):  
Roberto de la Fuente ◽  
María Teresa Parra ◽  
Alberto Viera ◽  
Adela Calvente ◽  
Rocío Gómez ◽  
...  

2020 ◽  
Vol 160 (10) ◽  
pp. 610-624
Author(s):  
Shayer M.I. Alam ◽  
Stephen D. Sarre ◽  
Arthur Georges ◽  
Tariq Ezaz

Agamid lizards (Squamata: Agamidae) are karyotypically heterogeneous. Among the 101 species currently described from Australia, all are from the subfamily Amphibolurinae. This group is, with some exceptions, karyotypically conserved, and all species involving heterogametic sex show female heterogamety. Here, we describe the chromosomes of 2 additional Australian agamid lizards, <i>Tympanocryptis lineata</i> and <i>Rankinia diemensis</i>. These species are phylogenetically and cytogenetically sisters to the well-characterised <i>Pogona vitticeps,</i> but their sex chromosomes and other chromosomal characteristics are unknown. In this study, we applied advanced molecular cytogenetic techniques, such as fluorescence in situ hybridisation (FISH) and cross-species gene mapping, to characterise chromosomes and to identify sex chromosomes in these species. Our data suggest that both species have a conserved karyotype with <i>P. vitticeps</i> but with subtle rearrangements in the chromosomal landscapes. We could identify that <i>T. lineata</i> possesses a female heterogametic system (ZZ/ZW) with a pair of sex microchromosomes, while <i>R. diemensis</i> may have heterogametic sex chromosomes, but this requires further investigations. Our study shows the pattern of chromosomal rearrangements between closely related species, explaining the speciation within Australian agamid lizards of similar karyotypes.


Sign in / Sign up

Export Citation Format

Share Document