scholarly journals Major latex protein-like encoding genes contribute to Rhizoctonia solani defense responses in sugar beet

Author(s):  
Louise Holmquist ◽  
Fredrik Dölfors ◽  
Johan Fogelqvist ◽  
Jonathan Cohn ◽  
Thomas Kraft ◽  
...  

Abstract Sugar beets are attacked by several pathogens that cause root damages. Rhizoctonia (Greek for “root killer”) is one of them. Rhizoctonia root rot has become an increasing problem for sugar beet production and to decrease yield losses agronomical measures are adopted. Here, two partially resistant and two susceptible sugar beet genotypes were used for transcriptome analysis to discover new defense genes to this fungal disease, information to be implemented in molecular resistance breeding. Among 217 transcripts with increased expression at 2 days post-infection (dpi), three resistance-like genes were found. These genes were not significantly elevated at 5 dpi, a time point when increased expression of three Bet v I/Major latex protein (MLP) homologous genes BvMLP1, BvMLP2 and BvML3 was observed in the partially resistant genotypes. Quantitative RT-PCR analysis on diseased sugar beet seedlings validated the activity of BvMLP1 and BvMLP3 observed in the transcriptome during challenge by R. solani. The three BvMLP genes were cloned and overexpressed in Arabidopsis thaliana to further dissect their individual contribution. Transgenic plants were also compared to T-DNA mutants of orthologous MLP genes. Plants overexpressing BvMLP1 and BvMLP3 showed significantly less infection whereas additive effects were seen on Atmlp1/Atmlp3 double mutants. The data suggest that BvMLP1 and BvMLP3 may contribute to the reduction of the Rhizoctonia root rot disease in sugar beet. Impact on the defense reaction from other differential expressed genes observed in the study is discussed.

Plant Disease ◽  
1989 ◽  
Vol 73 (11) ◽  
pp. 879 ◽  
Author(s):  
R. D. Martyn

2008 ◽  
Vol 127 (6) ◽  
pp. 602-611 ◽  
Author(s):  
J. C. Lein ◽  
C. M. Sagstetter ◽  
D. Schulte ◽  
T. Thurau ◽  
M. Varrelmann ◽  
...  

1996 ◽  
Vol 144 (5) ◽  
pp. 225-230 ◽  
Author(s):  
O. I. Saleh ◽  
P.-Y. Huang ◽  
J.-S. Huang

2021 ◽  
Author(s):  
Hong Zhang ◽  
Hanping Li ◽  
Xiangyu Zhang ◽  
Wenqian Yan ◽  
Pingchuan Deng ◽  
...  

Cell wall-associated kinases (WAKs), which are encoded by conserved gene families in plants, are crucial for development and responses to diverse stresses. However, the wheat (Triticum aestivum L.) WAKs have not been systematically classified, especially those involved in protecting plants from disease. Here, we classified 129 WAK proteins (encoded by 232 genes) and 75 WAK-Like proteins (WAKLs; encoded by 109 genes) into four groups, via a phylogenetic analysis. An examination of protein sequence alignment revealed diversity in the GUB-domain of WAKs structural organization, but it was usually characterized by a PYPFG motif followed by CxGxGCC motifs, while the EGF-domain was usually initiated with a YAC motif, and eight cysteine residues were spliced by GNPY motif. The expression profiles of WAK-encoding homologous genes varied in response to Blumeria graminis f. sp. tritici (Bgt), Puccinia striiformis f. sp. tritici (Pst) and Puccinia triticina (Pt) stress. A quantitative real-time polymerase chain reaction (qRT-PCR) analysis proved that TaWAK75 and TaWAK76b were involved in wheat resistance to Bgt. This study revealed the structure of the WAK-encoding genes in wheat, which may be useful for future functional elucidation of wheat WAKs responses to fungal infections.


2019 ◽  
Vol 34 (1) ◽  
pp. 19-29
Author(s):  
Mira Vojvodic ◽  
Dejan Lazic ◽  
Petar Mitrovic ◽  
Brankica Tanovic ◽  
Ivana Vico ◽  
...  

Soil-borne fungi belonging to the genus Rhizoctonia are considered to be among the most destructive sugar beet pathogens. Although multinucleate R. solani AG-2-2 is frequently detected as the main causal agent of root rot of sugar beet worldwide, several binucleate (AG-A, AG-E and AG-K) and multinucleate Rhizoctonia (R. solani AG-4, AG-5 and AG-8) have also been included in the disease complex. Due to their soil-borne nature and wide host range, the management of Rhizoctonia root rot of sugar beet is highly demanding. Identification of Rhizoctonia AG associated with root rot of sugar beet is the essential first step in determining a successful disease management strategy. In this paper we report a highly specific and sensitive real-time PCR protocol for detection of R. solani AG-2-2 which showed a high level of specificity after testing against 10 different anastomosis groups and subgroups, including AG-2-1 as the most closely related. Moreover, a similar conventional PCR assay showed the same specificity but proved to be at least a 100 times less sensitive. Future research will include further testing and adaptation of this protocol for direct detection and quantification of R. solani AG-2-2 in different substrates, including plant tissue and soil samples.


Sign in / Sign up

Export Citation Format

Share Document