scholarly journals Exploring the missing heritability in subjects with hearing loss, enlarged vestibular aqueducts, and a single or no pathogenic SLC26A4 variant

2021 ◽  
Author(s):  
Jeroen J. Smits ◽  
Suzanne E. de Bruijn ◽  
Cornelis P. Lanting ◽  
Jaap Oostrik ◽  
Luke O’Gorman ◽  
...  

AbstractPathogenic variants in SLC26A4 have been associated with autosomal recessive hearing loss (arHL) and a unilateral or bilateral enlarged vestibular aqueduct (EVA). SLC26A4 is the second most frequently mutated gene in arHL. Despite the strong genotype–phenotype correlation, a significant part of cases remains genetically unresolved. In this study, we investigated a cohort of 28 Dutch index cases diagnosed with HL in combination with an EVA but without (M0) or with a single (M1) pathogenic variant in SLC26A4. To explore the missing heritability, we first determined the presence of the previously described EVA-associated haplotype (Caucasian EVA (CEVA)), characterized by 12 single nucleotide variants located upstream of SLC26A4. We found this haplotype and a delimited V1-CEVA haplotype to be significantly enriched in our M1 patient cohort (10/16 cases). The CEVA haplotype was also present in two M0 cases (2/12). Short- and long-read whole genome sequencing and optical genome mapping could not prioritize any of the variants present within the CEVA haplotype as the likely pathogenic defect. Short-read whole-genome sequencing of the six M1 cases without this haplotype and the two M0/CEVA cases only revealed previously overlooked or misinterpreted splice-altering SLC26A4 variants in two cases, who are now genetically explained. No deep-intronic or structural variants were identified in any of the M1 subjects. With this study, we have provided important insights that will pave the way for elucidating the missing heritability in M0 and M1 SLC26A4 cases. For pinpointing the pathogenic effect of the CEVA haplotype, additional analyses are required addressing defect(s) at the RNA, protein, or epigenetic level.

2021 ◽  
Author(s):  
Jeroen Smits ◽  
Suzanne E. de Bruijn ◽  
Cornelis P. Lanting ◽  
Jaap Oostrik ◽  
Luke O’Gorman ◽  
...  

Abstract Pathogenic variants in SLC26A4 have been associated with autosomal recessive hearing loss (arHL) and a unilateral or bilateral enlarged vestibular aqueduct (EVA). SLC26A4 is the second most frequently mutated gene in arHL. Despite the strong genotype-phenotype correlation, a significant part of SLC26A4 cases remains genetically unresolved. In this study, we investigated a cohort of 28 Dutch index cases diagnosed with HL in combination with an EVA but without (M0) or with a single (M1) pathogenic variant in SLC26A4. To explore the missing heritability, short- and long-read whole genome sequencing and optical genome mapping were performed. We found a previously described EVA-associated haplotype (Caucasian EVA (CEVA)) to be significantly enriched in our M1 patient cohort. The haplotype was also present in two M0 cases. Despite extensive genetic analyses, we were not able to prioritize any of the variants present within the haplotype as the likely pathogenic defect, and therefore additional analyses addressing the defect(s) at the RNA, protein, or epigenetic level are required. Whole genome sequencing also revealed splice-altering SLC26A4 variants in two M1 cases, which are now genetically explained, but no deep-intronic or copy number variants. With these findings, we have provided important insights that will pave the way for elucidating the missing heritability in M0 and M1 SLC26A4 cases.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S470-S471
Author(s):  
Scott C Roberts ◽  
Egon A Ozer ◽  
Teresa Zembower ◽  
Chao Qi

Abstract Background Candida auris (C. auris), an emerging yeast species, is often drug-resistant and has caused outbreaks in healthcare settings. Surging C. auris cases at our institution prompted whole genome sequencing (WGS) of patient and environmental specimens and comparison to local and international isolates. Methods WGS was performed on clinical and environmental isolates obtained from Northwestern Memorial Hospital (NMH) from June 2018 to December 2019. Genome sequences were compared against isolates from other institutions in the Chicagoland area obtained from a reference lab (ACL) and from the CDC. Two isolates underwent long-read sequencing on the Oxford Nanopore GridION platform to obtain closed genomes. WGS was performed on the remaining isolates with the Illumina MiSeq platform. Results Twenty isolates from NMH, five from ACL, and two from the CDC underwent WGS to yield 12.6 Mb genomes. Any two NMH isolates differed from each other by a maximum of 36 single nucleotide variants (SNV) (Figure 1). Two patients thought to be part of a transmission cluster (isolates CA06 and CA07), differed by 7 SNVs. No phylogenetic grouping between hospital systems across Chicagoland was observed. Isolates from room surfaces from a C. auris patient differed by 1-6 SNVs from each other and from 7-8 SNVs from the patient isolate. Samples taken from different body sites of another patient differed by 4-9 SNVs. Average SNV counts were lower among nosocomially acquired cases when compared to C. auris isolates present on admission (Figure 2). All NMH isolates were fluconazole sensitive, but a fluconazole resistant ACL isolate differed from a sensitive NMH isolate by only 4 SNVs. Figure 1: Phylogenetic tree of all NMH and ACL isolates with fluconazole sensitivities Figure 2: Observed pairwise SNP differences between nosocomial and POA strains Conclusion WGS of C. auris did not reveal identical isolates in any instance, even from the same patient or the patients and their environment. Generally, lower numbers of SNVs were observed for intra- versus inter-institutional isolates. More work is needed to determine the use, if any, of WGS in outbreak investigations. Disclosures All Authors: No reported disclosures


2020 ◽  
Vol 29 (13) ◽  
pp. 2250-2260 ◽  
Author(s):  
Nicola Bedoni ◽  
Mathieu Quinodoz ◽  
Michele Pinelli ◽  
Gerarda Cappuccio ◽  
Annalaura Torella ◽  
...  

Abstract We investigated the genetic origin of the phenotype displayed by three children from two unrelated Italian families, presenting with a previously unrecognized autosomal recessive disorder that included a severe form of spondylo-epiphyseal dysplasia, sensorineural hearing loss, intellectual disability and Leber congenital amaurosis (SHILCA), as well as some brain anomalies that were visible at the MRI. Autozygome-based analysis showed that these children shared a 4.76 Mb region of homozygosity on chromosome 1, with an identical haplotype. Nonetheless, whole-exome sequencing failed to identify any shared rare coding variants, in this region or elsewhere. We then determined the transcriptome of patients’ fibroblasts by RNA sequencing, followed by additional whole-genome sequencing experiments. Gene expression analysis revealed a 4-fold downregulation of the gene NMNAT1, residing indeed in the shared autozygous interval. Short- and long-read whole-genome sequencing highlighted a duplication involving 2 out of the 5 exons of NMNAT1 main isoform (NM_022787.3), leading to the production of aberrant mRNAs. Pathogenic variants in NMNAT1 have been previously shown to cause non-syndromic Leber congenital amaurosis (LCA). However, no patient with null biallelic mutations has ever been described, and murine Nmnat1 knockouts show embryonic lethality, indicating that complete absence of NMNAT1 activity is probably not compatible with life. The rearrangement found in our cases, presumably causing a strong but not complete reduction of enzymatic activity, may therefore result in an intermediate syndromic phenotype with respect to LCA and lethality.


2018 ◽  
Vol 64 (3) ◽  
pp. 191-197 ◽  
Author(s):  
Takeshi Mizuguchi ◽  
Tomoko Toyota ◽  
Hiroaki Adachi ◽  
Noriko Miyake ◽  
Naomichi Matsumoto ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1267
Author(s):  
Anaïs Le Nabec ◽  
Mégane Collobert ◽  
Cédric Le Maréchal ◽  
Rémi Marianowski ◽  
Claude Férec ◽  
...  

Hearing loss is the most common sensory defect, due in most cases to a genetic origin. Variants in the GJB2 gene are responsible for up to 30% of non-syndromic hearing loss. Today, several deafness genotypes remain incomplete, confronting us with a diagnostic deadlock. In this study, whole-genome sequencing (WGS) was performed on 10 DFNB1 patients with incomplete genotypes. New variations on GJB2 were identified for four patients. Functional assays were realized to explore the function of one of them in the GJB2 promoter and confirm its impact on GJB2 expression. Thus, in this study WGS resolved patient genotypes, thus unlocking diagnosis. WGS afforded progress and bridged some gaps in our research.


2018 ◽  
Author(s):  
Maxime Garcia ◽  
Szilveszter Juhos ◽  
Malin Larsson ◽  
Pall I. Olason ◽  
Marcel Martin ◽  
...  

AbstractSummaryWhole-genome sequencing (WGS) is a cornerstone of precision medicine, but portable and reproducible open-source workflows for WGS analyses of germline and somatic variants are lacking. We present Sarek, a modular, comprehensive, and easy-to-install workflow, combining a range of software for the identification and annotation of single-nucleotide variants (SNVs), insertion and deletion variants (indels), structural variants, tumor sample heterogeneity, and karyotyping from germline or paired tumor/normal samples. Sarek is implemented in a bioinformatics workflow language (Nextflow) with Docker and Singularity compatible containers, ensuring easy deployment and full reproducibility at any Linux based compute cluster or cloud computing environment. Sarek supports the human reference genomes GRCh37 and GRCh38, and can readily be used both as a core production workflow at sequencing facilities and as a powerful stand-alone tool for individual research groups.AvailabilitySource code and instructions for local installation are available at GitHub (https://github.com/SciLifeLab/Sarek) under the MIT open-source license, and we invite the research community to contribute additional functionality as a collaborative open-source development project.


2018 ◽  
Vol 12 (6) ◽  
pp. e0006566 ◽  
Author(s):  
Elizabeth M. Batty ◽  
Suwittra Chaemchuen ◽  
Stuart Blacksell ◽  
Allen L. Richards ◽  
Daniel Paris ◽  
...  

2020 ◽  
Vol 29 (6) ◽  
pp. 967-979 ◽  
Author(s):  
Revital Bronstein ◽  
Elizabeth E Capowski ◽  
Sudeep Mehrotra ◽  
Alex D Jansen ◽  
Daniel Navarro-Gomez ◽  
...  

Abstract Inherited retinal degenerations (IRDs) are at the focus of current genetic therapeutic advancements. For a genetic treatment such as gene therapy to be successful, an accurate genetic diagnostic is required. Genetic diagnostics relies on the assessment of the probability that a given DNA variant is pathogenic. Non-coding variants present a unique challenge for such assessments as compared to coding variants. For one, non-coding variants are present at much higher number in the genome than coding variants. In addition, our understanding of the rules that govern the non-coding regions of the genome is less complete than our understanding of the coding regions. Methods that allow for both the identification of candidate non-coding pathogenic variants and their functional validation may help overcome these caveats allowing for a greater number of patients to benefit from advancements in genetic therapeutics. We present here an unbiased approach combining whole genome sequencing (WGS) with patient-induced pluripotent stem cell (iPSC)-derived retinal organoids (ROs) transcriptome analysis. With this approach, we identified and functionally validated a novel pathogenic non-coding variant in a small family with a previously unresolved genetic diagnosis.


Sign in / Sign up

Export Citation Format

Share Document